基于LabVIEW的集成电路测试分析仪
对故障芯片内部可能存在的短路情况,系统具备双重保护功能,一是与2个电源管脚串接的限流电阻;二是SN754410自身具有热保护功能,当电流过大导致温升超出限度时会自动关断,保护芯片和电源不受损害。
2.1.3 通信电路
单片机系统与上位机传统上采用RS 232总线通信,但目前很多计算机尤其是笔记本电脑已不支持串口。如仍采用RS 232通信方式,则会给测试仪的应用带来极大的不便。为提高测试仪的适用性能,采用FT232设计了RS 232与USB的接口,为测试仪提供了即插即用和热插拔的良好特性。使用FT232与上位机连接前,需要事先安装相应的驱动程序。驱动装好后会在系统中产生一个虚拟串口,上位机软件可通过这个虚拟串口与测试仪建立连接。
测试仪上设计了可供选择的两路电源接口。一路通过外部稳压电源接入,另一路取自USB接口。一般情况下USB接口可以提供500 mA以下的电流,足够测试仪使用,可以免去外接电源。
2.2 测试软件设计
单片机软件采用C语言编写,以便于程序维护和扩展。软件流程图如图4所示。单片机上电后处于空闲等待状态,被测芯片插座与电源断开。当收到上位机发来的测试命令、芯片型号和封装等信息后,首先根据封装类型给对应电源管脚上电,再根据命令类型选择测试矢量来源(即决定使用固化的数据还是用户数据)。测试完毕后,如果先前命令是“功能测试”,仅将判别好坏的结果返回上位机,如果是“逻辑分析”,则需将响应矢量发回上位机,由上位机根据响应矢量数据生成波形图。
2.3 测试矢量与响应矢量设计
测试矢量和响应矢量是测试操作的基本数据结构。测试矢量是欲向芯片管脚施加的激励数据,响应矢量是单片机从芯片管脚读回的数据。两者均为16位,与芯片管脚一一对应。测试矢量的16位数据中对应于芯片输入管脚的那些数据位是激励位,对应于输出管脚的数据位是功能正确时的响应。对于功能测试,测试矢量预先根据真值表生成并存于单片机FLASH中。如果是逻辑分析,测试矢量由用户提供。响应矢量中仅对应于芯片输出管脚的那些数据位有意义,单片机通过读取芯片管脚状态获得响应矢量。
一个完整的测试过程包含施加测试矢量、读取响应矢量、响应矢量比较3个步骤。为了简化操作,单片机采用端口读写方式,这样一个16位的矢量只需2次8位读或写操作即可完成。需要注意的是,响应矢量与测试矢量的比较仅对其中的芯片输出位有意义,由于程序中采用字节比较方式,应采取措施屏蔽掉输入位对比较结果的影响。针对这个问题,设置了16位的屏蔽矢量,该矢量将对应于芯片输入管脚的数据位置“0”,对应于芯片输出管脚的数据位置“1”。在执行比较操作前,先将测试矢量和响应矢量分别与屏蔽矢量进行位与后再比较,从而消除了输入位对比较结果的影响。屏蔽输入位的流程如图5所示。
上位机软件提供了一个操作友好的人机界面,使用LabVIEW平台开发。LabVIEW是图形化编程工具,内置有各种仪器驱动程序和操作面板控件,非常适合测试与控制系统的设计。利用LabVIEW开发上位机软件需要重点解决2个问题:一是通信功能的实现;二是测试数据编辑和波形显示的实现。
LabVIEW中实现串行通信十分方便,仅需调用串口配置、串口写、串口读等函数,对函数参数简单设置即可,整个过程完全图形化操作,简便快捷。测试数据编辑和波形图显示是本设计的一个特色,利用LabVIEW中的数字数据(Digital Data)和数字波形图(Digital Wave Gragh)控件可以十分容易地实现这2个功能。数字数据控件类似于一张真值表,用户可以任意添加和删除数据。数字波形图将测试响应以图形的方式直观显示出来,横轴代表时间,纵轴代表信号,不同信号配以不同的颜色,便于识别与分析。开发的软件界面如图6所示。软件包括功能测试和逻辑分析2部分。功能测试位于界面左侧,用于快速判别芯片有无故障,用户仅需设置好芯片型号、封装类型、串口号等参数,按下“开始测试”按钮启动测试。如果功能正常,则会显示绿灯表明测试结果正确。反之显示红灯,指示芯片故障。界面右侧是逻辑分析部分,用户预先在数据窗口中编辑好测试向量,按下“发送数据”按钮启动测试,待测试完成后即可看到用波形图显示的响应结果。4 结语
本设计利用LabVIEW开发平台和单片机系统,实现了一个性价比良好,界面美观,操作方便,体积小巧的集成电路测试分板仪。该仪器在传统功能测试的基础上加以扩展,增加了芯片逻辑分析功能,并辅以波形图的直观显示方式。经测试,系统功能正确,运行稳定,各项指标均达到要求,为数字电路实验教学和管理提供了有力工具,具有良好的推广与应用价值。
- 具扩展频谱频率调制的低EMI DC/DC稳压器电路(12-24)
- EMI/EMC设计讲座(三)传导式EMI的测量技术(07-20)
- 扩展射频频谱分析仪可用范围的高阻抗FET探头(07-14)
- 开关电源基于补偿原理的无源共模干扰抑制技术(08-27)
- 开关电源的无源共模干扰抑制技术(11-12)
- 省电设计使DDS更适合便携应用(12-19)