微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 高频机型UPS的几个“致命弱点”论值得商榷

高频机型UPS的几个“致命弱点”论值得商榷

时间:12-29 来源:互联网 点击:



所以问题的提出者为了证明自己的观点还给出了工频机型UPS的零地电压为0.8V,而高频机结构UPS的零地电压高于1.5V的数字。实际上这个数字是没有意义的,不能说明任何问题,因为零地电压不用变压器就可以很方便地降到1V甚至0.8V以下。在上述几种负载电流与谐波电流组合不同的情况下,其零地电压也不同,有的高达10V以上。不论工频机型UPS还是高频机型UPS的零地电压都会有高于或低于1.5V的情况。

2. 零地电压的影响

零地电压偏高会不会就是“致命弱点”呢?本来一般用户就对零地电压视为洪水猛兽,一提零地电压就谈虎色变。问题的提出者又火上加油,更把它提高到“致命”的高度。关于零地电压的影响问题,笔者已在多篇文章和书籍中有详细叙述,不防在这里再稍微重复一些。

形成干扰必须具备三大因素:干扰源,传递干扰的途径和受干扰的设备。这三者缺一不可,讨论就从这三者入手。

(1)零地电压是不是干扰源

如果证明零地电压确实是干扰源,零地电压干扰负载甚至是“致命”的弱点这个结论就可能成立,高频机型UPS零地电压偏高的影响也罪责难逃。为了说明零地电压,先得要弄清楚零地电压是什么。图8示出了零地电压的位置。从图中可以看出,零地电压指的是负载下端和地之间的电压。理想的接线方法在零线上没有电流的,它只是一个参考点,所以整条零线上就是一个零电位。一般零线和地线在交流市电的源端(比如变电站)是接在一点并且接地的,如图8所示。这样一来就可以看出,所谓零地电压就是零线电流和零线电阻共同形成的零线电压。图8以A相电源UA为例,很明显,如果此时负载开关S是断开的,就没有负载电流,即Ia=0,那么零线上也没有电流,当然零线上也没有压降,零地电压也为零。当


图8 零地电压的位置与形成

开关S闭合后,负载电流Ia从UA出发就沿箭头方向通过开关S负载零线电阻回到星形变压器的中点。值得注意的是负载电流Ia先是流过负载,从负载出来后,才进入零线回到中点,换句话说负载电流Ia在负载上做功在先,经过零线在后,即零线上的压降是做完功的回程电流在零线上留下的印记。难道说这个印记还会反回去将做过功的结果再给反过来!比如是驱动一个步进马达,开关S闭合一下,马达就动一下,而后就在零线上出现一段零地电压,难道这段零地电压还可再回去不让马达动作或使其动作不正常?这里有一个基本概念:实际上零地电压是和负载动作同时出现和同时消失的,不存在影响后面动作的问题。

还有的说什么零地电压可导致后面的数字机器出现误码或丢码。这又是一个基本概念问题。众所周知,UPS供出的交流电压是给包括计算机在内的电子设备内部电源的,这个内部电源的任务就是将交流电压变换成内部电路所需的直流电压,而且电子设备的内部电路只和本机的电源打交道,所以本机电源的质量好坏才直接影响着本机电路的工作质量。用电机器的误码不误码和UPS没有任何关系!因为那是用电设备机内电源的事情。所以在这里零地电压不是干扰源。

(2)传递干扰的通道:零地电压是如何传递到负载机器上去的

退一万步说,假设零地电压是干扰源,现在看一看它如何能加到负载上去。图9给出了零地电压的等效电路。在这里取出UPS中的一相电压UA作为例子。将零线上的分布电阻用集中参数RN代替,负载电阻是RL,于是负载和零线就是跨接在电源UA两端的两个串联的阻抗。

两个阻抗上的电压之和就是电源电压,即:U

L +UN=UA (5)

两个电阻上流过同一个电流Ia,由于零线敷设完毕后,零线电阻就是个不变的定值,就是电阻负载,对外不会产生任何影响。当然会有人说:流过零线的还有谐波电流,如图中虚线箭头所示。是的,尽管有谐波电流流过,尽管也会使零线上压降有所变化,一方面与220V相比是微乎其微,另一方面它的流向如虚线箭头所示,也不会返回头去倒流到负载。零线上电压降的变化对负载没有任何影响,零线对地的电位就好像浮在水上的船,负载就好像坐在船上的人,无论水平面如何让波动,水涨船高,坐在船上的人本身不会受影响。

还会有的人提出:既然RL和RN是分压关系,会不会由于RN上分压太多而影响负载的正常工作呢?一般说任何负载都允许输入电压变化±10%,而220V的±10%就是±22V!

图9 零地电压的等效电路


在零线上出现22V的压降几乎是不可想象的,如果真有这么大的零线压降那肯定是出问题了。因为在UPS机柜范围内的零线汇流排上,正常情况下一般绝不会出现3V以上的压降,一般都小于1V。还有一种情况就是:由于UPS输出端的低通滤波器特性不好,有一部分高次谐波流入负载。其实这也无妨,负载机器的内置电源输入端都接有滤波器,首先将高次谐波拦截,第二级就是整流滤波器进行拦截,第三级就是直流变换器。这三道大门可将任何高次谐波甚至干扰关在门外或给予消灭。正因为负载机器内部电源具有如此强大的功能,莫须有的给零地电压扣上“干扰负载”的帽子,实在是无中生有。

就是说,没有任何一条通路能把零地电压和干扰加到负载上去。更何况零地电压不是干扰源。当然,空间干扰就是另一回事了,不属于这里讨论的范畴。

(四)高频机型UPS在市电断电后,电池放电时系统效率降低2%

有的地方说得非常具体,看来是做了实地测量。遗憾的是他把部分高频机UPS当成了全部,再说这个结论还存在漏洞。下面分几种情况介绍。

1. 单相小功率UPS情况

图10示出了一般小功率高频机UPS原理电路图。因为高频机UPS的特点之一就是取消了输出隔离变压器,所以能取消这个占机器绝大重量的变压器就是因为采用了半桥逆变器。但半桥逆变器的工作需要两个直流电源,而对于功率不大的高频机UPS的两个直流电源尤其是采用两组电池就显得太累赘了。于是就采用了Boost升压电路技术。如图中储能电感L,电子开关S,隔离二极管VD2,虚拟电源电容器C1和C2就构成了升压电子变压器。在由市电供电时,整流器ZL1和充电器为电池组GB充电,整流器ZL2为主电路供电,由于220V交流只能给出约300V的直流电压,而半桥逆变器则需要两个至少310V以上的直流电压。所以Boost升压电路就在电容C1和C2上造成两个约400V的串联连接的虚拟直流电源。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top