微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 一种新型的自动恒流放电系统的研制

一种新型的自动恒流放电系统的研制

时间:01-07 来源:互联网 点击:

此使用平面度为150μm的散热器。为了达到有效地把热量传导到外部散热器,在传热界面要选择使用在工作温度内性能稳定并且在装置寿命期内性能不发生变化的导热硅脂。

4 系统保护

和负极母线的连接,这种宽板起到了防止功率回路中寄生电感的作用。

由于实际的功率电路线路中总有寄生漏电感,当IGBT被关断时,感性负载中的电流不可能立刻发生变化,该负载电感两端产生阻止母线电流减少的电压V(V=LdI/dT)。它与电源电压相迭加并以浪涌电压的形式加在IGBT的两端。在极端情况下,该浪涌电压会超过IGBT的额定值VCES并导致它损坏。在IGBT功率回路中引起浪涌电压的能量与1/2LPI2成比例,LP是母线的寄生电感,I是工作电流。由此可见,在使用大电流的器件时更加需要降低功率回路的电感。因此为了得到一种适合大电流工作的低母线电感电路,就需要特殊的母线结构。有交错镀铜层和绝缘层构层的迭层母线设计,可以使电感量降低。迭层母线中被绝缘层隔离的宽板用于正极

其次,好的缓冲电路可以有效控制浪涌电压的关断和用续流二极管恢复浪涌电压,用以减少功率器件的开关损耗。IGBT缓冲电路与传统的双极晶体管缓冲电路存在两个方面的区别:一是IGBT具有强大的开关工作区,缓冲电路只需控制瞬态电压而不需要保护就可以抑制伴生达林顿晶体管的二次击穿超限;二是IGBT常工作在比达林顿高得多的频率范围。三种IGBT缓冲电路如图3所示。


3 估算发热

根据上述对IGBT的分析研究,三棱H系列IGBT器件—CT60是基于第三代IGBT技术和续流二极管技术,为功率电路设计、缓冲电路(吸收回路)设计及热设计而采用的大功率器件。它的最大允许峰值电压VCES为1000V;最大通过峰值电流IC为60A;T=25°C时IGBT的最大允许功耗为250W;T=25°C时IGBT结温的允许范围为-40~150°C;在规定条件和额定集电极电流下,IGBT的饱和压降(通态电压)VCE(sat)为2.6V;开通和过渡时间Td(on)为0.15μS;上升时间TR为0.3μS;关断过渡时间Td(off)为0.3μS;续流二极管的正向压降VEC为3V。

缓冲电路“B”使用快恢复二极管可箝住瞬变电压,从而抑制振荡的发生。缓冲电路“B”的RC时间常数,应该设为该开关周期的约1/3(τ=T/3=1/3f)。但对于大功率级别的IGBT工作,缓冲电路“B”的回路寄生电感将变得很大,以至不能有效地控制瞬变电压。由于大功率IGBT电路需要极低电感量的缓冲电路,而且缓冲电路必须尽可能地联到IGBT上,设计缓冲电路时,得考虑二极管封装内的寄生电感和缓冲电容引线的寄生电感。通常,小电容并联或二极管并联产生的电感量比大的单电容或单二极管产生的电感量更低。

IGBT在运行中会有导通功耗与开关功耗发生。这些功耗通常表现为热,所以必须采用散热器把这些热量从功率芯片传导到外部环境中去。如热系统设计不当,功率器件将过热并导致损坏。导通损耗伴随IGBT处于通态并传导电流而发生。导通期间的总功耗是由通态饱和电压与通态电流的乘积来计算的。在PWM的应用中,导通损耗须与占空比因子相乘,从而得到平均功率。导通损耗的一次近似可通过IGBT的额定VCE(sat)值与期待的器件平均电流值的乘积来得到,即PSS=VCE(sat)×IC。开关损耗是在IGBT开通与关断过渡过程期间的功率损耗。当PWM信号频率高于5kHz时,开关损耗会非常显著,一定要在热设计中予以考虑。得到开关损耗的最精确的方法是测量在开关过渡过程中IC与VCE的波形。将此波形逐点相乘,从而得到功率的瞬时波形,此功率波形下面的面积就是以焦耳/脉冲为单位的开关能量,这一面积通常通过作图积分来计算。总开关能量是开通与关断过程所耗能量之和,平均开关损耗是由单脉冲总开关能量[1]与PWM频率相乘得到,即:平均开关功耗PSW=fPWM×[ESW(on)+ESW(off)]。而总功耗为导通功耗与开关功耗之和,即PC=PSS+PSW。此放电系统也将利用该公式来估算IGBT器件的平均功耗。

5 PCB的总体可靠性设计

良好的电路布局是保证设备和电路安全运行及长寿命的重要前提,同时工艺限制也对PCB提出了严格的要求,应遵循以下几条原则:

·PCB可靠性设计应做到系统集成化、专业化设计。总体考虑电源地线布置、去耦与排线设计。区域分配应注意模拟电路、数字电路、功率器件的布局[2]

·可靠的电源、地线设计应做到模拟、数字的分别供电,减少地线公共阻抗,防止形成地线回路,同时保证一点接地以及电源入口的去耦设计。

该自动恒流放电模块可配合智能蓄电池组监测系统使用,当放电时放电电流连续可调,此时智能蓄电池组监测系统将监测每节电池的电压变化,当有任一节电池电压低于设定

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top