微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 手机RF前端设计挑战

手机RF前端设计挑战

时间:12-12 来源:互联网 点击:

。与电流控制相似,在电压控制中,通过调节集电极电压而非基级偏压来控制功率。本文中介绍的最后一个架构是功率检测(如图6所示)。这种方法将一部分信号耦合回检波器,检波器通过比较输出电压和参考电压来检测功率。这种功率控制方法的准确性也很高,失配主要取决于耦合器的方向和反馈回路中的误差。该架构的缺点是,增加了耦合器的输出损耗和组件成本,因为它需要更多电路来实现功率控制功能。

  \

  在非常简短地回顾了基本功率控制架构后,下面重点介绍器件的评估测试,采用的是能够反映实际性能,并直接影响通话时间、电池寿命和呼叫接收效果等用户满意度指标的方式。首先,为了解实际环境,必须描述天线性能(如图3所示)。正像前面所述,VSWR的变化范围在2:1到5:1之间,具体取决于终端用户和手机的位置。综合这些考量因素,用于对比的基准定为3:1 VSWR。选择该值的原因是因为它能很好地体现实际环境中的性能,而不会有不切实际的功率反射回PA,从而导致比较结果有误差。为正确描述这些产品,必须进行负载牵引测试,用这种方法设计人员可以精确控制失配、相角和输出功率精确度。该方法如图7所示。

  \

  通过图8和图9可以看出,即使采用不同架构实现了功率控制功能,在实际环境中的性能还是有可能出现很大差异。这意味着什么?为什么很重要?首先,如前所述,OTA性能是真正的关键,它与输出功率直接相关。如图9所示,在这三种维持到负载的恒定输出功率的方法中,电流控制是表现最差的一种。在GSM 850频段,电流控制和功率检测方法有大概1.5dB的差异。功率检测机制的缺陷在于允许电流增加,而其它解决方案中的电流维持在合理值。尽管这种情况下看起来通话时间会较长,但实际环境中并非如此。

  \

  例如,如果手机工作在29dBm(这是GSM系统中最常见的功率值),基站实际上会要求手机将功率值从29dBm提高到31dBm,因为输出功率无法满足当前功率控制电平(PCL)。这反过来会增加电流消耗,最终缩短通话时间。另一个需考虑的则是电流消耗所取得的优势。在手机中,如果电流控制机制在这些情况下提供了足够输出功率,能够满足运营商的OTA要求,则无须担心进入VSWR的功率。由于出色地降低了输出功率,因此提供一种VSWR性能较好的解决方案就能够大幅节省电流消耗。在查看图10时,请考虑以下问题:如果所有解决方案交付的功率均相同,那么它们会对终端用户有何影响?

  对于电压控制和功率检测方法而言,可将50欧姆校准设置为降低1dB,但仍满足相同的输出功率要求。ETSI传导规范指定,对于PCL 5,正常情况下的功率为33dBm±2dB。这意味着为达到传导性能,针对PCL 5,手机必须至少输出31dBm。考虑到留出余量的需求,最安全的校准值应为31.5dBm。如果需要更大的余量,则设计人员可将手机调相至50欧姆环境中为32dBm,从而大幅节约电流。图11中详细介绍了与50欧姆环境下性能的关联问题。

  \

\

  


在图11中,对这三个解决方案的电流与输出功率进行了的对比。这证明了如果设计人员要实现相同的输出功率以满足OTA需求,那么电流控制方案中的输出功率就需要调整为33dBm,功率检测方案的输出功率与之相比要小1dB。最终的结果是在满功率工作时,50欧姆环境下可节省180mA电流,从而延长电池寿命和通话时间。在节省电流的同时,并未牺牲任何实际输出功率OTA性能。降低调相目标的另一优势是,降低了吸收率(SAR),且减少了谐波的生成,因为在满功率1dB回退点,谐波能量要低很多。这减轻了辐射问题,并能加快产品面市速度。

  如果设计人员对该方法不感兴趣,而希望提高输出功率,那么可通过使用VSWR容差性能更优的器件来实现。但提高输出功率后,每个设计人员都面临着多时隙GPRS情形下辐射能量无法达到SAR要求的可能性。而设计更优的、VSWR容差性能良好的器件通过限制低阻抗状态下的输出功率,使手机工作在较高功率水平时仍能满足SAR要求(参见图12)。

  图12说明,如果手机设计人员希望优化OTA性能,那么电压控制和功率检测解决方案与电流控制解决方案相比,其调相目标要高出0.5到0.75dB。从统计角度看,较高的调相目标会降低SAR性能。但由图12我们可以看到,这三种解决方案的峰值功率摆幅是相同的,而50欧姆环境下设定的功率要高于电流控制方案的功率。这使得设计人员能够开发出在运营商要求的OTA性能方面比竞争对手更为优秀的产品。

最后需要考虑的是发射(TX)和接收(RX)性能间的平衡,以及是否能根据不同地区定制性能。从图3,即手机天线VSWR性能示意图中可以看出,如果需要的话,可以通过调谐来为提

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top