微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 工频机型UPS的输出变压器真的那么神

工频机型UPS的输出变压器真的那么神

时间:03-05 来源:互联网 点击:

在负载电流变化时就会有反电势e。这个反电势就取决于负载电流的变化率,即:

这时就有U=E-e,照样造成输出电压的不稳定,即动态性能不好的结果。也就是说电感是阻碍电流变化的,是脉冲电流的大敌。所以,在电源通往负载的线路中不允许有任何电感存在。最可能有电感的环节就是变压器,所以在绕制变压器时最怕有漏感,漏感越小变压器的质量越高。那些说变压器可以抗干扰者的根据恐怕就是基于变压器的电感,变压器没有了电感还靠什么抗干扰?

4变压器其他功能剖析

(1)变压器可缓冲负载电流的突然变化剖析

众所周知,IT负载电流是随机变化的,这种变化是根据其工作量的大小来决定的。往往有这样的情况,机房内设备在正常工作时,比如从UPS的LCD上显示负载量是70%,这是很让人放心的良好情况。但即使这样,也有转旁路的情况。什么原因呢?UPS转旁路有几种原因:过载、短路和逆变器故障。显然既不是逆变器故障也不是短路,就只有一种可能:短时间过载。为什么会过载呢?不是才有70%的负载量吗?这就是当代负载的特点,那70%的负载量是平时的平均功率,就是说机房中众多机器工作量不均衡,有的大有的小,所以平均下来70%,如图3所示。但有时候几乎所有的机器在同一时间都工作在最大负载状态,这时即出现了电流峰值。这个峰值有时甚至很大,持续时间也许数毫秒、也许几秒,其值之大不是UPS承担得了的,就只好切换到旁路。

图3表示的是UPS输出电压和电流关系原理图,上面的电压不论任何时间都应该是基本稳定的,这就是有好的动态性能。有人说变压器可以缓冲负载的电流突变(包括短路故障),现在就用图3来分析。在正常情况下,电流的变化都不太大,根据上述的讨论,一旦机房内几乎所有设备都同时工作在最大负荷,比如在t1需要一个很大的脉冲电流I1,按照有些人的说法,变压器要缓冲。所谓缓冲:在时间上缓就是不马上提供,到t2才给出,在幅度上缓就是不给那么大的电流I1,只提供较小的I2。举例说,IT在t1需要5kW的峰值功率,变压器给缓冲成在t2才给出3kW的峰值功率,请问,在这种情况下IT是什么反应?罢工!这是其一。

图3UPS输出电压和电流关系原理图

其二,在电源上限制电流的办法就是降低电压,如图3所示。为了减小电流就使变压器上的压降变大,如图中对应电流的电压下冲。这个下冲就是反电势,这就犯了电源的大忌:要想有这么大的反电势,就必须有这么大的电感量。变压器成了电感,线性环节变成了非线性环节,这已经不是变压器了!这样的所谓变压器在电路中是会使波形失真的,而在实际机器中波形没有失真,就说明漏感很小,甚至几乎为零。所以这些人的分析是没有根据的,是强加给变压器的,设计者本来就不是这个意思。

有对变压器防浪涌电流者作了这样的比喻:变压器就好比海边上的防波堤,一个浪打来,它就能抵挡一下。可惜变压器不是防波堤,而是平滑的沙滩。

(2)UPS的输出变压器所在位置起到抗干扰作用剖析

用图4对这个观点进行分析。图中的箭头指向就是两个UPS的输出端,众所周知,在用户的标书中都明确规定:UPS输出电压失真要小于3%~5%,就是说,如果达不到这个指标就有失败的危险。实际中,两类UPS都达到了这个指标,但值得注意的是工频机型UPS有变压器而高频机型UPS没有变压器,从图中可以看出,UPS输出有没有变压器的结果是一样的。为什么呢?众所周知,UPS逆变器不是干扰发生器,其输出波形是很正规的,并没有所谓的干扰,用不着去抗。那么输出端是不是有干扰反馈过来呢?我们用图5进行讨论。

图4两种机型UPS的输出电路比较

图5UPS输出到负载的馈电关系

图5点划线方框的后面是连接负载的电缆W,电缆的末端是脉冲负载RL。要知道电缆本身是有阻抗ZW的,其值的大小可用式(4)表示

式中:

ZW——导线在长度l时的阻抗;

l——导线W的长度;

S——导线W的截面积;

XL——导线W的自感阻抗,且XLμl;

r——导线W的电阻率。

因此,当负载电流IL通过时就会有压降,其大小如下式所示:

URZw=ILZW(5)

这样一来,负载端的电压UL就是从UPS输出电压UUPS减去线路压降ILZW,可用下式表示:

UL=UUPS-ILZW(6)

从图中可以看出,在脉冲负载电流IL通过时,线路压降ILZW随着导线的长度延长而增大,在负载端最大,这就使负载端出现电压波形失真的原因。

同样从图中也可以看出,供电线路是以UPS输出端A、B为起点的,很明显在这一点的线路长度l=0,所以线路压降ILZW=0,此点的电压

UL=UUPS-ILZW=UUPS

换言之,负载脉冲电流在线路上形成的压降根本就反馈不到UPS输出端来,那么变压器在

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top