全球7大前沿技术,让太阳能电池效率翻番?
在传统光电池中,硅中的电子被射入的光子击出而成为自由电子,能够自由地流入导线,从而产生电流。不幸的是,阳光中许多光子能量太高,当它们击打到硅上时,会产生一种“热电子”,它们会以热的形式迅速损失能量,在被导线捕捉到之前又重新回到初始状态。如果能在热电子冷却前就捕捉到它们,那么光电池的效率上限就会翻一番。
解决方案之一是降低电子的冷却速度,为捕捉它们赢得更多时间。去年,美国得克萨斯大学奥斯汀分校的化学家朱晓阳(Xiaoyang Zhu,音译)和同事将注意力投向了一种量子点,每一个点只包含数千个原子。他们将硒化铅量子点沉积在一层导电的二氧化钛(一种普通材料)上。当光线照在上面时,所产生的热电子损失能量所需的时间要比原先长了1 000倍。美国圣母大学(University of Notre Dame)的普拉山特·卡马特(Prashant Kamat,未参与此项研究)评论道,朱晓阳的团队“确实证明了这一设想是可能实现的”。
然而,延缓电子能量损失仅仅是一个方面。目前,朱晓阳的团队正在寻找能让导体将尽可能多的热电子转化为电流的方法,这样,导体本身才不会将它们以热量的形式吸收。
在最终得到实用的太阳能电池之前,还有许多困难需要克服。朱晓阳说,“我们需要建立一整套物理理论”,包括热电子究竟如何冷却,它们怎样流入导体等等。他说:“一旦解决了所有这些问题,我们就会知道最终应该使用什么材料。” 朱晓阳预计,这项工作“需要一些时间,但是我有信心取得成功。我希望看到这些新型太阳能电池板安装在自家屋顶上” 。该项目的商业回报将十分可观。
废热利用
热力发电机
形状记忆合金利用废热带来额外能量
废热利用热力发电机
在美国,人们消费的能源中,有60%白白浪费掉了,其中大部分以热的形式从汽车排气管和发电厂的烟囱中逃走。通用汽车公司的科学家正试图利用一种被称为“形状记忆合金”(shape-memory alloys)的新型材料,来捕捉这些宝贵的能量。形状记忆合金能将热能转化为机械能,进而产生电力。该研究组组长艾伦·布朗(Alan Browne)的第一个目标是,回收汽车排气系统中散发的热能,驱动车载空调或音响系统。
布朗计划使用由数条平行的镍—钛合金薄线组成的合金带来收集热能,它能“记住”某种特定形状。所有形状记忆合金都能在两种状态之间来回变换:在较高温度下较坚硬的本态与较低温度下更为柔韧的状态。在这个设计中,合金带绕过呈三角形排列的3个滑轮。其中一角处的合金带接近炽热的排气系统,而另一角则位于温度较低的远端。合金带在高温处收缩,低温处伸张,就会让自己沿这个三角环路转动并带动滑轮旋转,进而通过轴承驱动发电机。温差越大,环路转动越快,产生的能量也就越多。
通用汽车公司制造的原型机由一条仅10克重的合金带来产生两瓦特功率,可以点亮一盏小灯。布朗声称,10年内,这种发电机产生的功率就会提高到商用的标准。他还补充说,为家用电器或发电厂冷却塔安装这种记忆合金热力发电机,不存在任何技术障碍。该项目的合作者、美国HRL实验室的材料科学家杰夫·麦克奈特(Geoff McKnight)说,这种合金为先前被认为是无法实现的一些应用领域开辟了新天地,因为即使温差只有10℃,它们也可以使用。
通用汽车公司的设计并不复杂,但离实用仍很遥远。形状记忆合金容易疲劳,会变得脆而易碎;需要连续处理3个月才能重新回到“本态”的形状记忆;合金线很难组合成带;如何解决利用空气来有效加热和冷却合金带也是一个挑战。布朗没有具体说明目前如何解决这些问题,而只提到他们不断调整合金线的直径、形状,以及加热和冷却的方式。换句话说,他们正在调试“科学上的和人能想象得到的”所有参数。
通用汽车公司并不是唯一一家试图利用废热来产生能量的机构。美国伊利诺伊大学的桑吉夫·辛哈(Sanjiv Sinha)正在研发一种可弯曲的固态材料,它也能将热力转化为电能。如果热力发电机能被安装在现有或未来的设备中,它就会有近乎无限的应用前景:从数千座的冷却塔和工业锅炉,到数以百万计的家用暖气、冰箱和烟囱,还有拖拉机、卡车、火车和飞机。全世界会有数百亿亿焦耳的能量可以被回收利用,极大降低化石燃料的消耗。
车辆工程
冲击波汽车发动机
汽车油耗将降低80%
车辆工程冲击波汽车发动机
一个多世纪以来,几乎所有轿车和卡车都使用的是活塞式发动机。即便是目前最新型的混合动力车,以及雪佛兰沃尔特电动车这样的全新概念车,也都还在使用小型活塞式发动机来提供动力和为电池充电。然而,美国密歇根州立大学正在研发一种完全不同的、不使用活塞
- 太阳能电池组件功率计算(12-09)
- 有机太阳能电池转换效率的极限值约为21%(12-09)
- 太阳能电池 五个你意想不到的创新应用(12-09)
- 太阳能电池阵模拟器的设计(12-08)
- 新型可弯曲可嵌入式太阳能电池转换效率达到了29%(12-07)
- 不良太阳能电池片的控制流程(12-07)