微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于DSP56F805的可并机逆变电源设计

基于DSP56F805的可并机逆变电源设计

时间:03-25 来源:互联网 点击:



图3 DA2000HP逆变电源工作原理框图


DA2000HP逆变单元主变换电路采用高可靠性的单端高频功率变换电路,变换频率为64kHz。直流输入通过输入滤波器、输入断路器、输入接触器送入单端高频功率变换电路,经过变换,变压器次级输出高压正弦调制波形。高压正弦调制波形经过高频滤波器滤去高频成分,得到100Hz半桥正弦波。100Hz半桥正弦波经过50HzIGBT逆变桥变换得到50Hz220V纯净的正弦波。最后,50Hz220V纯净的正弦波通过输出接触器、输出断路器、输出滤波器送给负载。
为了提高逆变单元的可靠性和负载适用性,在50HzIGBT逆变桥前增加补偿器及损耗器。
DA2000HP逆变单元采用的算法是模糊控制算法,把电压误差和电流作为输入模糊变量,实现逆变单元模糊控制。
2.3 DSP56F805简介
Motorola公司开发的数字信号处理器DSP56F805具有16位高速定点运算能力,既有单片机(MCU)灵活控制功能和丰富的外设,又有DSP高速运算能力,非常适合电源控制、电机控制、工业控制、仪表制造等领域。这种型号的数字信号处理芯片具有如下优点
1)很高的处理速度
——单指令执行周期为25ns(工作频率为80MHz时),即每s可执行40M条指令;
——单周期16×16并行乘-累加器;
2)特有的并行结构
——采用Harvard结构,程序区与数据区的存储单元是分开的,高效16位DSP56800DSP内核;
——3条内部地址总线和1条外部地址总线;
——4条内部数据总线和1条外部数据总线;
3)编程灵活
——具有类似单片机的编程方式;
——支持高级C语言编程;
——开发方便,灵活的EVM板及丰富的SDK软件包;
4)高度集成的内部资源
——片上集成闪存(Flash)及RAM,计有31.5K×16位的程序Flash,512×16位程序RAM,4K×16位的数据Flash,2K×16位数据RAM,2K×16位的启动Flash;
——2个独立的PWM模块,每个PWM模块带有6个可独立编程PWM输出脚,3个电流传感取样脚和4个故障检测输入脚,支持中心对准PWM和边沿对准PWM工作方式;
——可同时工作的2个12位ADC模块,每个ADC模块包含4路输入脚,ADC模块可与PWM模块同步工作;
——14路独立的输入输出口,18路复用的输入输出口;
——1个CAN2.0模块;
——2个异步串行口(SCI)和1个同步串行口(SPI);
——2个微分解码器;
——4组计数定时器;
——内置COP模块,方便完成看门狗(Watchdog)功能;
——2个外部中断源;
——可编程的PLL时钟;
——JTAG/OnCE接口,方便调试及生产。

3 系统硬件
系统硬件电路包括主控单元,A/D电路,PWM电路,并机与同步电路,检测、控制及显示电路,JTAG/OnCE电路,RS-232、时钟及电源电路等。主控芯片用了一片144-pinLQFP封装的DSP56F805数字信号处理器,具体电路如图4。


图4 系统硬件


3.1 主控单元
硬件以DSP56F805为中心,充分利用其 A/D、PWM、内部Flash、CAN等自带功能,简化了设计。
系统工作正常时,PWMA0~PWMA1脚输出一对SPWM波形,通过隔离与驱动电路驱动单端变换电路功率管(MOSFET),再经过主变压器升压,次级得到高压SPWM正弦调制波形,经过L、C滤波得到纯净的100Hz半桥正弦波。PWMA2~PWMA3脚输出一对PWM波形,通过隔离与驱动电路驱动功率管(IGBT),得到50Hz220V纯净的正弦波。PWMA4作为D/A转换,经滤波成直流信号,通过隔离与驱动电路驱动损耗器。PWMB0~PWMB2作为输出口,根据无功功率,选择适当的电容,通过隔离与驱动电路驱动补偿器。A/D电路时刻检测输入电压、输出电压、输出电流、机内温度等参数,当发现一个或多个参数超过软件的设定值,DSP立即关断SPWM信号,并发出报警信号。另外,FAULTA0作为输出过流取样,一旦FAULTA0电压超过阈值,DSP立即关断PWM输出。
3.2 A/D电路
DSP56F805的ADC模块具有下述特点:
1)12位精度;
2)同时或连续采样工作方式;
3)同时采样工作方式下,8个通道转换时间为26.5ADC时钟周期,即26.5×0.2μs=5.3μs;
4)可由PWM的内部同步信号或定时器或外部信号触发ADC转换。
为提高转换速度,本系统采用同时采样工作方式,并由PWMA内部同步信号触发进行A/D转换。2个ADC模块的配对情况如下:
AN0(100Hz电流取样)——AN4(100Hz电压取样);
AN1(输出交流电流取样)——AN5(输出交流电压取样);
AN2(输入直流电压取样)——AN6(吸收管电流取样);
AN3(温度取样)——AN7(参考电压1.25V)。
由于ADC采样的量有直流量和交流量,故对两种不同的量需进行分别处理。
直流量(输入直流电压、温度及参考电压1.25V)采用一般的数字滤波处理方式,表达式如式(5)。
X=(5)
式中:X为A/D采样结果;
X(n-1)为第n-1次的采样结果;
X(n)为第n次的采样结果;
K1、K2为修正系数。
交流分量包括100Hz电压、电流、输出电压、电流、吸收管电流。在一个周期内(10ms)采样160次,根据式(6)~式(8)算出有关的功率值。
S=Ks[|U(i)|×|I(i)|](6)
P=Kp[U(i)×I(i)](7)
Q=(8)
式中:S为视在功率;
P为有功功率;
Q为无功功率;
Ks、Kp为修正系数。
3.3 PWM电路
DSP56F805 PWM模块具有以下主要特点:
1)3组互补的PWM对或6个独立的PWM;
2)死区可调;
3)半周期重装载能力;
4)20mA输出驱动能力。
本系统2个PWM模块工作方式如下:
PWMA0,PWMA1(SPWM0,SPWM1)工作于互补的PWM对,用于产生SPWM调制波,载波为64kHz,调制波为100Hz;
PWMA2,PWMA3(PWM0,PWM1)工作于软件控制的I/O,产生50Hz方波信号。把100Hz半波变换为50Hz全波;
PWMA4(D/A)工作于D/A,根据机内温度或损耗产生修正的信号调整吸收功率管;
PWMB0,PWMB1,PWMB2(F0~F2)工作于软件控制的I/O,用以控制补偿电路。
3.4 并机与同步电路
同步电路由PA0,PA1完成,其中PA0为输入脚,检测外部(其它的逆变单元)的50Hz同步信号,PA1为输出脚,用以送出本机的50Hz同步信号。当系统上电后,本机先检测有无外部同步信号,若有则本机跟踪外部的信号,并发出一个同步信号,若无则工作于本机的同步信号。
并机由CAN完成。CAN模块负责收集其它逆变单元的状态值(电压、电流、频率、有功功率、无功功率等)并发送本身的状态值。
3.5 检测、控制及显示电路
1)PD2设置为输入口,当S1开关合上后电源才启动;
2)PD6,PD7设置为输入口,分别检测输入接触器状态及输出断路器状态,只有两个都正常逆变单元才工作;
3)PB0~PB7,PD0,PD1,PE2为LCD显示控制电路,其中PE2为输入口,为显示菜单按键S2,PD0,PD1为输出口,控制LCD的RS及E,PB0~PB7为输出口,送出信号给LCD的数据口DB0~DB7;
由于采用16×2位字符型LCD模块,查手册知LCD的门限电压为
Vih(min)=2.2V,Vil(max)=0.6V,
符合DSP芯片的逻辑,故DSP56F805可直接驱动LCD,不须电平转换;
4)PD3~PD5,PE4~PE7为输出口,分别控制有关指示灯及继电器等。
3.6 JTAG/OnCE电路
DSP56F805提供JTAG/OnCE电路可方便用户把程序写入片内的Flash闪存,也方便用户在线编程、修改和升级软件。
3.7 RS-232、时钟及电源电路
DSP56F805内带两组SCI,本系统用了SCI0作为RS232接口,若单机使用时RS232作为通信口与PC机相连,若并机使用,则该口不用,由主监控器负责与PC机通讯。
DSP56F805有一个带PLL锁相环时钟单元,通过软件编程可方便改变DSP的时钟。
DSP56F805主电路由+3.3V供电。
为防止噪声干扰影响A/D转换精度,A/D采用独立供电系统。
若外部的数字电路有+5V供电系统,与DSP接口必要时须进行电平转换。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top