微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 最高能效,最低成本: BC²

最高能效,最低成本: BC²

时间:04-12 来源:互联网 点击:

振电容。

图3:无源恢复电路

当外部条件不变时,这个电路工作良好。不过,在功率因数校正应用中设计这种电路难度很大,这是因为小线圈的重置电流受到升压二极管的反向恢复电流和外部电气条件的限制。

尽管无损无源电路只需很少的元器件,不幸地是因为技术原因,这种电路在功率因数校正应用中不可行。这个示例表明,虽然电流缓冲法已被人们熟知,但是在不影响前文提到的五大标准的前提下,通过使用电流缓冲法恢复小线圈L的能量是目前无法克服的技术挑战。


2. BC²:能量恢复电路

这个创新的电路[1]是按照软开关标准设计的,如图4所示,为恢复小线圈L贮存的电能,在升压线圈LB 附近新增两个二极管 D1和D2 和两个辅助线圈NS1和NS2 。

图4:新型能量恢复电路:BC²

2.1. 概念描述
当晶体管导通时,线圈NS1 在主升压线圈内恢复升压二极管DB的反向恢复电流IRM 。因为交流输入电压调制LB 电压,所以它也调制NS1上的反射电压。此外,这个输入电压还调制升压二极管电流IDB及其相关的反向恢复电流IRM。这些综合调制过程让流经小线圈L的额外的反向恢复电流 IRM 在线圈NS1 内重置,即便在最恶劣的情况下也是如此。当晶体管关断时,辅助线圈NS2把小线圈L的额外电流注入到输出电容。线圈NS2 上的反射电压与输入电压是一种函数关系,当交流线处于低压时,反射电压达到最大值,与小线圈L的最大电流值对应。这些综合变化使流经小线圈L的电流通过二极管D2 消失在体电容内,即便在最恶劣的情况下也是如此。当dI/dt 斜率(大约10 A/µs)较低时,例如,在开关转换器的断续模式下,这两个附加线圈NS1和NS2 用于关断二极管D1 和D2; 二极管的反向恢复电流不会影响电路特性。我们可以说,这个概念“在电路内回收电流”,因此称之为BC²。

2.2. 相位时序描述

变压比m1 和m2 是线圈NS1和NS2 分别与NP的比值。

相位 [ t0前]
在t0前,BC²电路的特性与传统升压转换器的特性相同。升压二极管DB 导通,通过体电容器发射主线圈能量。

相位 [t0, t1]

在t0时,功率MOSFET导通,DB 的电流等于I0。在t0+时,电流软开关启动,即在零电流时,功率MOSFET的电压降至0V,无开关损耗。在t0后,流经小线圈L的电流线性升高,达到输入电流I0和二极管反向恢复电流IRM的总合为止,而流经DB 的电流线性降至-IRM。

图5 真实地描述了这些电流的变化,并考虑到了m2 变压比。下面是晶体管TR和升压二极管DB的dI/dt简化表达式 :



此外,在t0 +时,功率MOSFET的固有电容COSS 被放电,电阻是晶体管的导通电阻RDS(on)。与功率校正电路不同,晶体管漏极上的电压较低,因为VNS2反射电压是从VOUT抽取的,这个特性让BC² 电路具有一个优点,在低输出负荷时,可以节省电能,利用下面的公式可以算出节省的电能:

因此,BC² 还降低了关断损耗。

相位[t1, t2]

在t1+时,升压二极管DB 关断,过流IRM被贮存小线圈内,过流使DB 结电容线性放电。同时,主线圈上的电压极性发生变化,直到D1 二极管导通为止。与此同时,过流IRM 被变压比m1降低,然后被发射到主线圈内。

图5:每相的等效时序

图6:每相的等效电路

因此,流经NS1的电流有助于给内部线圈LB放电,同时交流电源电压给线圈Np 施加偏压。因为根据下面公式计算的反射电压VNS1的原因,流经D1 的电流IRM 降至0 A。


为保证断续模式下的软开关操作,流经D1的电流在t3前达到0 A。因为当正弦周期内的Vmains电压达到最高值时,IRM电流达到最高值,所以tD1_ON 时间趋势支持功率因数校正应用/此外,为消除二极管D1 的反向恢复电流效应,因为反射电压VNS1低的原因,必须使dI/dt_D1 总是保持低斜率,通过下面公式计算dI/dt_D1:


不幸地是,在这个相位期间,升压二极管DB被施加一个高反向电压:

这个特性要求这种应用增加一个二极管,为此,意法半导体开发出一个优化的二极管,使IRM 电流值与击穿电压达到精确平衡。

相位[t2, t3]

在t2时,D1二极管的电流达到0 A,BC²变成一个传统的功率升压转换器。当功率晶体管保持通态时,在t3点,主LB 线圈内和小L线圈内的电流上升到I1。

相位 [t3, t4]

在t3时,功率晶体管关断。这时,COSS电容电压被小线圈L内贮存的电流线性充电,直到二极管D2导通为止;在关断期间,功率开关上没有过压应力。

同时,主线圈上的电压极性发生变化,直到DB 二极管导通为止。一旦所有的二极管一起导通,输出电流按图5所示的方式配流。因为NS2的反射电压的原因,D2 的电流从I1开始降至0 A,dI/dt斜率较低。相反,在t4时,DB 的电流升到标称值。

这种配流有利于BC²电路。事实上,在交流电压较低的功率因数校正应用(例如90 VRMS)中,最高增强电流是在二极管DB 和D1之间机械分配。因此,整流阶段的导通损耗得到改进。下面是反射电压VNS2 和D2 导通时间的计算公式:

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top