电力线仿真系统的FPGA设计与实现
为便于分析,可以对上述电力线脉冲噪声进行简化。认为当上述脉冲的包络达到一定值时为一个脉冲的开始,下降到一定值后为该脉冲结束。简化的电力线脉冲噪声的特性可以用3个参数进行描述:脉冲幅度A,脉冲宽度tw和脉冲到达时间tarr。按照上述模型,文献对时域特性进行了统计分析:脉冲噪声宽度tw一般为数十μs,幅度为数百mV,功率谱高出背景噪声约50 dB,在家用电力线环境中,脉冲噪声出现时间的比率约为0.001 35%,平均出现频率为0.122次/s。
3 仿真算法的设计与实现
3.1 电力线信道的仿真
利用式(9)可以针对某一特定信道进行基于测量的建模。为使仿真结果不失一般性,根据实际电力线信道中大量存在的随机分布分支,可以假设冲击信号通过该信道将随机在不同时刻产生不同幅值的信号在接收端进行叠加,根据中心极限定理,大量独立同分布的随机变量的和的分布服从高斯分布。因此,信道响应的包络服从瑞利分布。当信道中存在直射分量时,即电力线信道中的情况,随机变量服从均值不为零的高斯分布,此时,信道响应的包络服从莱斯分布。即
其中,A为主信号即直射信号的峰值;I0()是修正的0阶第一类贝塞尔函数。莱斯分布常用参数K来描述,K定义为确定信号的功率与多径分量方差之比。
在Matlab中,通过调用莱斯信道函数可以生成莱斯信道滤波器,使用该滤波器对信号进行处理可以模拟莱斯信道。莱斯信道的函数原型为
CHAN=RICIANCHAN(TS,FD,K,TAU,PDB)
其中,TS为采样频率;FD为多谱勒频移;K为莱斯分布参数;TAU为各路径延时向量;PDB是相应路径的增益向量。
根据Han Kim的研究多径时延的最大值一般50 ms,Zimmermann提供若干了由式(9)所描述的信道的多径分量gi的值。根据上述结果,考虑到仿真的复杂度,将多径数设为50条,多径时延向量用均值为25ms,方差为2.5×10-6的正态随机变量生成;多径分量大小用均值为0.05,方差为0.05的正态随机变量生成。经过仿真,可得到莱斯信道的Matlab仿真结果如图5所示。
3.2 电力线噪声的仿真
根据文中研究结果,电力线噪声主要可分为5大类,其中有色背景噪声、窄带噪声和异步周期脉冲噪声由于其功率谱密度较小,统计特性相对恒定,而统一归为背景噪声。大量的背景噪声的和可以使用高斯白噪声进行模拟。
同步周期脉冲噪声的周期为10 ms或20 ms,与G3-PLC系统一个数据帧的持续时间相当,因此在一帧数据内只会出现极少的同步周期脉冲,为简化处理,可以将它并入突发脉冲噪声。Manfred Zimmermann提出采用马尔科夫过程对突发脉冲噪声的出现进行模拟,根据研究结果,该模型能较精确的模拟脉冲噪声的出现时间,但该模型由于运算量大而带来实现上的困难。一种较简单且不失精确性的方法是根据突发脉冲出现的时间、时间宽度等参数的统计特性,由式(10)进行模拟。
文中脉冲噪声出现时间的比率约为0.001 35%,平均出现频率为0.122次/s。假设系统采用fs的采样频率,则每个采样点出现脉冲噪声的概率为Pimp=0.122/fs;脉冲噪声平均宽度为wimp=1.35×10-5×fs/0.122个采样点。不妨定义在脉冲噪声包络幅度下降到最大值的5%以内时为脉冲噪声的结束时刻。将上述参数代入式(10)可得
根据上述参数的推导结果,可以在Matlab中通过如下方法模拟电力线噪声:
用随机数产生函数Randsrc产生一个N维[0,1]分布的随机向量作为脉冲噪声标示向量,其中P(x=1)=Pimp;然后循环搜索标示向量,当该点的值为1时,自该点起调用脉冲发生函数;再用脉冲发生函数首先产生两个正态分布的独立的随机数A0、b0,并产生一个正态分布的随机变量d,其均值由式(11)求得。最后按式(10)产生一个输出向量,并将其加到结果向量中。
通过上述方法产生的电力线脉冲噪声如图6所示。
由于噪声出现的概率较低,因此在仿真时需要延长仿真时间,而这样会导致过大的数据量,因此在此次仿真中,调低了采样频率,但这并不影响仿真效果。从图中可以直观地看出,该结果与电力线实际的噪声环境比较吻合。
3.3 仿真算法的实现
信道的特性在单次仿真中应该保持不变,可以借助PC机对信道进行设计。按文中讨论的算法求出信道的单位冲击响应向量,并通过RS2 32口或者网口等方法发送给仿真系统,在FPGA中采用FIR滤波器实现该单位冲击响应。同时为实现带反馈回路的信道的仿真,可以在FPGA中实现另一路并行的IIR滤波器,通过PC机的参数对两路滤波器的输出进行切换。噪声的仿真方法在PC机上产生相应的参数传入。FPGA,为保证更好地实时性,也可以在FPGA中采用伪随机序列产生电路实现。
4 结束语
针对电力线信道和噪声的标准实时仿真平台,对于电力线通信设备的开发和测试是必要的,它能帮助开发人员在设备研发的每一步对可靠性进行快速测试,并且针对不同电力线通信产品提供统一的测试定标平台。文中在对电力线信道特性和噪声进行深入分析的基础上,提出了一种电力线信道实时仿真平台的设计方法,该算法使用Matlab仿真验证了可行性。该平台可使用基于FPGA的硬件实现,具有较高的实用
价值。
- 3D IC设计打了死结?电源完整性分析僵局怎么破(09-21)
- 快速调试嵌入式MCU设计仿真的三大因素浅析(12-12)
- 访问电源参考设计库的众多理由(12-09)
- 开关电源设计中如何选用三极管和MOS管(12-09)
- 一款常见的车载逆变器设计电路图(12-09)
- 电子工程师必备:电源设计及电源测评指南(12-09)