微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电源工程师设计札记(一):轻松完成电源设计

电源工程师设计札记(一):轻松完成电源设计

时间:08-10 来源:互联网 点击:

元件。AD5791具有极低的温度系数,为0.05 ppm/°C。AD8676基准缓冲的漂移系数为0.6 μV/°C,总共会向电路中增加0.03 ppm/°C的增益漂移;AD8675输出缓冲会再贡献0.03 ppm/°C的输出漂移;相加后为0.11 ppm/°C。缩放和增益电路中应使用低漂移、热匹配电阻网络。建议使用Vishay体金属薄膜分压器电阻系列300144Z和300145Z,其电阻跟踪温度系数为0.1 ppm/°C。

热电电压

热电电压是Seebeck效应造成的结果:相异金属结处产生与温度有关的电压。根据结处的金属元件,结果产生的电压位于0.2 μV/°C至1 mV/°C之间。最好的情况是铜铜结,产生的热电EMF不到0.2 μV/°C。在最糟糕的情况下,铜铜氧化物结可产生最大1 mV/°C的热电电压。对小幅温度波动的这种灵敏度意味着,附近的耗能元件或跨越印刷电路板(PCB)的低速气流可能产生不同的温度梯度,结果产生不同的热电电压,而这种电压又表现为与低频1/f 噪声相似的低频漂移。可通过消除系统中的相异结和/或消除热梯度来避免热电电压。虽然消除相异金属结几乎不可能——IC封装、PCB电路、布线和连接器中存在多种不同的金属——但使所有连接均保持整洁,消除氧化物,这种方法可以有效地减少热电电压。屏蔽电路使其不受气流影响,是一种有效的热电电压稳定方法,而且具有电屏蔽的增值作用。图7展示了开放式电路与封闭式电路在电压漂移上的差异。

  

  图7. 开放式系统和封闭式系统的电压漂移与时间关系。

为了消除热电电压,可在电路中增加补偿结,但必须进行大量的试验和重复测试,以确保插入结配对正确、位置无误。截至目前,最高效的方法是减少信号路径中的元件数,稳定局部温度和环境温度,从而减少电路中的结。

物理应力

高精模拟半导体器件对其封装承受的应力非常敏感。封装中的应力消除填充物具有一定的作用,但无法补偿因PCB变形等局部应力源在封装上直接产生的压力带来的较大应力。印刷电路板越大,封装可能承受的应力越大,因此即使在小型电路板上也应安装敏感电路——通过柔性或非刚性连接器与大系统相连。如果必须使用较大电路板,则应在敏感元件周围,在元件两面或(最好)三面割些应力消除切口,可极大地减少因电路板弯曲给元件带来的应力。

长期稳定性

在考虑噪声和温度漂移的基础上,还需考虑长期稳定性。精密模拟IC虽然非常稳定,但确实会发生长期老化变化。AD5791在125°C的长期稳定性一般好于0.1 ppm/1000 小时。虽然老化不具累积性质,但遵循平方根规则(若某个器件的老化速度为1 ppm/1000 小时,为√2 ppm/2000 小时,为√3 ppm/3000 小时等等)。一般地,温度每降低25°C,时间就会延长10倍;因此,当工作温度为85°C时,在10000小时的期间(约60星期),预计老化为0.1 ppm。以此外推,在10年期间,预计老化为0.32 ppm。即是说,当工作温度为85°C时,在10年期间,数据手册直流规格可能漂移0.32 ppm。

电路构建和布局

在注重精度的电路中,精心考虑电源和接地回路布局有助于确保达到额定性能。在设计PCB时,应采用模拟部分与数字部分相分离的设计,并限制在电路板的不同区域内。如果DAC所在系统中有多个器件要求模数接地连接,则只能在一个点上进行连接。星形接地点尽可能靠近该器件。必须采用足够大的10 µF电源旁路电容,与每个电源引脚上的0.1 µF电容并联,并且尽可能靠近封装,最好是正对着该器件。10 μF电容应为钽珠型电容。0.1 µF电容必须具有低有效串联电阻(ESR)和低有效串联电感(ESL),如高频时提供低阻抗接地路径的普通多层陶瓷型电容,以便处理内部逻辑开关所引起的瞬态电流。各电源线路上若串联一个铁氧体磁珠,则可进一步防止高频噪声通过器件。

电源走线必须尽可能宽,以提供低阻抗路径,并减小电源线路上的毛刺效应。利用数字地将快速开关信号(如时钟)屏蔽起来,以避免向电路板上的其他器件辐射噪声,并且不得靠近基准输入,也不得置于封装之下。基准输入上的噪声必须降至最低,因为这种噪声会被耦合至DAC输出。避免数字信号与模拟信号交叉,电路板相反两侧上的走线应彼此垂直,以减小电路板的馈通效应。

基准电压源

维持整个电路性能的是外部基准电压源,其噪声和温度系数直接影响系统的绝对精度。为了充分发挥1 ppm AD5791数模转换器的性能,基准元件和关联元件应具有与DAC不相上下的温度漂移和噪声规格。虽然离温度漂移为0.05 ppm/°C的基准电压源仍相去甚远,但0.1 Hz 至10

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top