微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 空间受限型应用中的 PMBus 热插拔电路介绍

空间受限型应用中的 PMBus 热插拔电路介绍

时间:08-20 来源:互联网 点击:

的稳态结壳热阻抗 RthJ-C 表明,壳结温升约为 1.2°C。最大额定 MOSFET 结温为 150°C。故障状态期间 1 ms 一次性脉冲时长条件下,图 4b 和 4c 的曲线图分别表示 50A、12V 时的安全工作区 (SOA) 大小,以及 0.001 的标准化结到环境瞬态热阻抗 ZthJ-A。


图 4 CSD17309Q3[3] MOSFET: a) Rdson 随温度变化情况;b) SOA; c)瞬态热阻抗

分流电阻器 RS

使用一个 2 m? 分流电阻器以后,LM25066 可提供 12.5A 的主动电流限制(25 mV典型电流限制阈值电压),并且精确度为 ±8%。因此,电流限制设置为额定满负载电流的 125%。快速作用断路器功能设置为 22.5A (45 Mv 典型断路阈值电压)。

Vishay WSL1206-18 系列分流电阻器拥有 1% 容限和 275 ppm 电阻温度系数。全部0.5W 额定功率可用于 70°C 额定温度,但后续线性降低至 170°C。10A 时的分流器功耗为 0.2W。

热插拔控制器 U1

LM25066 有一个 I2C/SMBus 接口(使用 SCL、SDA/SMBA 和地址引脚连接)和一个 PMBus 兼容型指令结构,以帮助执行动态系统配置和遥测。利用三个地址引脚,设置 PMBus 地址。分别使用 1% 和 2% 精确度测量电压、电流和功率遥测。一个二极管连接的晶体管温度传感器,帮助轻松、精确地进行 MOSFET 温度测量。

TVS, Z1

电流中断期间的电流转换速率达到 100A/?s 甚至更大,因此输入功率通路中的电源轨总线结构不可避免地存在寄生电感。存储于该电感中的能量传输至电路中其他组件,以产生过电压动态行为。这种电感式电压过冲,会损害热插拔 MOSFET、热插拔控制器和下游电路的可靠性,除非对其进行正确的控制。按照图 3 所示,使用一个快速响应的单向 TVS 二极管,连接 VIN 和 GND。它主要充当需要中断的差模电流的分流通路。

制约 TVS [4] 的一些因素包括电气性能、组件体积和成本。一般而言,TVS 平衡电压 VR 等于或者大于 DC 或者连续峰值工作电压电平。断路事件期间承受峰值脉冲电流的 TVS 钳位电压 VC(MAX),应低于 MOSFET 和控制器的绝对最大额定电压。另外,更高额定功率的 TVS 拥有更大的电压开销,因为它的动态阻抗更低。因此,如果要求有更尖利的曲线图拐点,则相比只根据峰值功率规范选择的一般强制规定,选择更大的 TVS 要更加有利一些。

输入电压范围为 12V±10% 时,选择 15V Vishay Esmp 系列 TVS。该器件有一个阳极和两个阴极连接。1.1 mm 的小体积,让它能够安装在 PCB 的底部。

输入电容器 CIN

因其可以降低输入阻抗并提供去耦功能,本地输入旁路电容有一定的作用,但在热插拔期间插入插件卡时对 CIN 充电的脉冲电流一般会损害电容器的可靠性,因此这种电容并不怎么实用。当电容器位于热插拔电路前面时,许多 OEM 厂商将其看作为一个系统级可靠性问题,因此一般不会安装这种电容器。

PCB 布局

图 5 显示了一种紧凑、高密度的电路 PCB 布局。图 6 显示了该模块的照片。热插拔解决方案共占用 300 mm2 的 PCB 面积。TVS 和可选无源组件均位于 PCB 的底部。栅极线路和分流检测线路均短路,并且未使用输入去耦电容器。使用表面贴装端接,将电源和信号连接至主板。


图 5 热插拔电路 PCB 布局

基本组件位于顶部,内部各层主要构成并行接地层,用于散热和降低传导损耗。TVS 和各种可选组件位于底部。散热过孔位于 MOSFET 漏极板和 TVS 阴极上,连接至内部各层。请记住,表面贴装组件焊接的 PCB 作为散热的主要方法。同样,产生热的一些组件,可以利用 PC B层内已经有的一些铜质多边形材料、层和热过孔来提高其热特性。使用边缘端接将模块化电路板连接至主板,还可以帮助散热。如果重复脉冲钳制期间出现通过MOSFET稳态功耗和/或 TVS 功耗,则板级散热设计变得尤为重要。这种热插拔控制器设计,通过在出现故障时锁住电路或者在检测到故障以后后续“重试”开始时提供足够长的暂停时间,使这一问题得到缓解。


图 6 热插拔模块照片

实验结果

根据这种热插拔控制器[2]实用实现,人们想出了各种实验测量方法,以对电路性能进行评估:热插拔带电插入、电流限制和短路保护。图 7a、7b 和 7c 分别描述了相关电路波形。

就这方面来说,它允许在检测到故障以前形成最高可能电流,在图 2 所示电路输出直接声明的低阻抗短路特别令人讨厌。根据之前的一些考虑,同输入通路串联的寄生电感耦合高电流转换速率,可能会在向通过 MOSFET 发送一条关闭指令以后在热插拔控制器 VIN 和 SENSE 引脚上引起破坏性瞬态出现。图 7c 突出显示部分,使用这种模块时断路事件期间的电流与电压波形,被看作是良性的。


图 7 热插拔电路振荡波形:a)启动前插入延迟热插拔带电插入;b)锁闭电流限制响应;c)输出短路引起的热插拔断路事件

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top