微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 开关电源电磁兼容性问题研究

开关电源电磁兼容性问题研究

时间:10-31 来源:互联网 点击:

体器件作为开关,以开和关的时间比例来控制输出电压的高低。由于开关电源的工作频率都在几十至几百kHz,所以线路中的电流和电压变化率都很大,产生了很大的电磁干扰,它们会通过电源线以共模和差模的方式向外传输干扰,同时也会向周围空间辐射干扰。图1是普通开关电源线路图,用于说明电源中电磁干扰的产生与耦合途径。

图1 开关电源电路简图

3.1输入整流回路

在输入整流回路中,整流管VD1~VD4只有在脉动电压超过输入滤波电容C1上的电压的时候才能导通,电流才从市电电源输入,并对C1进行充电。一旦C1上的电压高于市电电源的瞬时电压,整流管截止。所以,输入整流回路的电流是脉冲性质的,有着丰富的高次谐波电流。输入电流与市电电源电压的不同步,还导致了开关电源的功率因数低下。

3 .2开关回路

开关电源在工作时,开关管VT处于高频通断状态,经由高频变压器T的初级线圈、开关管VT和输入滤波电容C1形成了一个高频电流环路。这个环路的存在,就有可能对空间形成电磁辐射。

输入滤波电容C1对电磁干扰的形成也有一定的影响,如果C1的电容量不足够大,则输入滤波效果不好,这时高频电流还会以差模方式传导到交流电源中去。

此外,在开关回路中,开关管驱动的负载是高频变压器的初级线圈,是电感性的,由于高频变压器的结构不是完全理想的,除了初级电感外,还存在一定的漏电感。所以,在开关管关断的瞬间,变压器中存储的能量不能完全地传送到次级,结果在高频变压器的漏电感上感应出一个尖峰高电压,如果尖峰有足够高的幅度,很有可能会造成开关管VT的击穿。

3.3 次级整流回路

开关电源在工作时,次级整流回路的VD5也处于高频通断状态。由高频变压器次级线圈、整流二极管VD5和滤波电容C2构成了高频开关电流环路。由于有这个环路的存在,同样也有可能对空间形成电磁辐射。

次级整流回路中的二极管在正向导通时,PN结被充电;在加反向电压时,积累的电荷将被抛散,并因此产生反向电流,这个过程非常短暂。所以,在有分布电感和分布电容存在的回路里,实际上也形成了一个高频的谐振电路,当二极管截止瞬间的电流变化非常剧热时,在整个次级整流回路中会产生高频衰减振荡。

3.4控制回路

在控制回路中的脉冲控制信号是主要的干扰源,只不过与其它各项干扰源比较起来,控制回路的干扰比较小。

3.5由分布电容引起的干扰

(1)由初级回路开关管外壳与散热器的容性耦合引起的共模传导干扰 在初级回路中,开关管外壳与散热器之间的容性耦合,会在电源输入端产生传导共模干扰。该共模传导的途径形成一个环路。该环路始于高du/dt的散热器和安全接地线,通过交流电源的高频导纳和输入电源线返回。

(2)由高频变压器初次级之间分布电容引起的共模传导干扰

共模干扰是一种相对大地的干扰,所以它不会通过变压器“电生磁和磁生电”的机理来传递,而必须通过变压器绕组间的耦合电容传递。在开关电源的高频变压器初次级之间存在着分布电容是个不争的事实。

3.6 产生干扰的其它原因

开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压零电流开关技术应用最为广泛。该技术极大地降低了开关器件所产生的电磁干扰。但是,软开关无损吸收电路,多利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换。因而,该谐振电路中的二极管成为电磁干扰的一大干扰源。

开关电源中,一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模干扰信号的滤波,以及交流方波信号转换为平滑的直流信号。由于电感线圈的分布电容,导致电感线圈的自谐振频率降低,从而使大量的高频干扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。随着干扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断下降,直至达到谐振频率以上时,完全失去电容器的作用而变为感性。不正确地使用滤波电容及引线过长,也是产生电磁干扰的一个原因。

开关电源PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理、检测电路的设计不合理,均会导致系统工作的不稳定或降低对静电放电、电快速瞬变脉冲群、雷击、浪涌及传导干扰、辐射干扰及辐射电磁场等的抗扰性能力。

4 电磁兼容性研究及解决方法[3][4]

电磁兼容性的研究。一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种干扰信号模拟器、附助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top