微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于UC3909芯片对铅酸蓄电池的充电管理方案

基于UC3909芯片对铅酸蓄电池的充电管理方案

时间:01-24 来源:互联网 点击:

上厂家所提供的蓄电池参数, 参照UC3909 芯片资料及相关参考文献,计算U C3909 外围元件参数, R S1、RS2 、RS3、RS4计算公式如下:

  式中, UREF 为UC3909 内部基准电压2. 3 V.代入相关值计算得( R S1、RS2、RS3、RS4 分别为245 k Ω 、16 kΩ 、53kΩ 、975 kΩ .

  另外, 可以根据流入U C3909 内部电流误差放大器反向输出端CA 的固定控制电流ITRCK 、涓流充电电流I T 、恒流充电电流IBULK及过充终止电流IOCT 计算得出RG1、RG2 , R OVC1和ROVC2 , 其基本计算公式如下:

  RSET 取11. 5 k , 电流采样电阻RS 取55 m , 代入式( 5)、( 6) 得:

  ROVC1和R OVC2满足以下关系式:

  (7)

  最终ROVC1和ROVC2 分别选取为1 k Ω , 10 kΩ .

  3. 2 铅酸蓄电池的温度补偿

  光伏系统中的铅酸蓄电池一般与太阳能板一起安装在户外, 而周围温度的变化对铅酸蓄电池的性能有重大影响, 有研究表明,铅酸蓄电池的浮充电流对温度极为敏感,温度每变化10℃, 浮充电流成倍增长, 对于本设计中用到的蓄电池,根据厂家提供的参数, 同一浮充电流下, 其温度系数为- 3. 9 mV/ ℃ , 也就是说如果要防止浮充电流增加, 当温度升高1 时, 其浮充电压应该降低3. 9 mV ; 同理, 当温度降低1 时, 其浮充电压应该升高3. 9 mV才能保持浮充电流不变。

  图4 铅酸蓄电池温度补偿电路

  U C3909 内部集成了具有铅酸蓄电池温度补偿功能的电路如图4 所示, A1 为电流/ 电压转换元件,其输入端分别接10 kΩ 普通电阻及10 k Ω 热敏电阻。A2 与外接四个20 kΩ 电阻组成 差动运算放大电路。RT HM 一般贴附在铅酸蓄电池的表面壳体用于检测其温度, 当铅酸蓄电池内部温度变化时,通过热敏电阻RTHM 的反馈使U C3909 的基准电压2. 3 V 也随温度按- 3. 9 mV/℃ 的温度系数变化。从而确保铅酸蓄电池在浮充状态下准确工作于安全的浮充电压, 保护了铅酸蓄电池。

  3. 3 DC/ DC变换器设计

  由于光伏阵列受外界环境影响较大, 本系统中12 V的太阳能板输出电压的变化范围约为0~ 20 V,如果直接为铅酸蓄电池充电, 由于铅酸蓄电池的正常工作电压要高于10. 8 V, 因此当弱光条件下, 太阳能板的输出电压低于铅酸蓄电池的端电压时, 其产生的电能不能被铅酸蓄电池吸收。因此本系统采用把太阳能板输出经过超级电容器组,再由超级电容器组先经升降压后为铅酸蓄电池充电, 有效增强系统弱光充电能力,提高利用效率。

  本设计采用升降压模式, 如图5 所示,超级电容器组接DC/ DC 转换电路的输入端, 设定输入范围为4. 5~ 20 V, 输出电压范围为10. 8~ 14. 7 V.Q1 由单片机输出PWM 信号控制, Q2 由UC3909 的5 脚经MOS 管驱动电路控制, 5 脚输出PWM 频率由UC3909 的18 脚所接电阻RSET 及19 管脚所接电容CT决定, 公式如下:

  图5 DC/ DC转换电路

  UC3909 的工作频率设定为200 kH z.同时在蓄电池的充电回路中还串接电流采样电阻RS , RS两端的电压信号作为U C3909 芯片内部电流采样放大电路的输入信号分别接于CS , CS+ 输入端, 考虑到充电电流较大, 为减少RS的功耗同时防止U C3909 芯片内部电流采样放大电路饱和失真, RS 应尽量小, 本电路中取55 m .

  3. 4 超级电容器组在系统中的作用

  (1) 超级电容具有使用寿命长, 充放电限制少, 功率密度大, 充电电池比能量高, 可快速大电流充放电等优点,是一种新型高效的储能器件。但由于其能量密度仅为铅酸蓄电池的1/ 5, 无法满足太阳能路灯照明这种大功率电路系统大容量储能的要求。因此本系统中采用蓄电池组与超级电容器组混合储能,结合超级电容功率密度高及铅酸蓄电池能量密度高的特点, 提高储能系统性能。

  (2) 本系统中采用8 个2. 7 V, 1 200 F的超级电容串联成额定电压21. 6 V, 容量为150 F的超级电容器组, 由于12 V太阳能板在强光照射时其输出电压约为20 V, 采用21. 6 V超级电容器组既可确保储能器件的安全同时可以充分吸收太阳能板输出能量。

  (3) 由于系统采用MPPT 技术来实现最大功率输出, MOS 的高速导通与关断都会在输出端产生相应干扰谐波, 在太阳能板输出端及铅酸蓄电池间加上超级电容器组可以有效抑制干扰谐波, 保证铅酸蓄电池平稳充放电, 延长铅酸蓄电池使用寿命。

(4) 铅酸蓄电池只能工作在UT 至UOC 电压范围内( 以12 V 铅酸蓄电池为例, 只能工作在10. 8~ 14. 7 V之间) .相比之下,由于超级电容器组可深度放电, 其工作电压可以设定在较低范围,如该系统中设定超级电容器组的最低输出电压为4. 5 V.因此在弱光状态下, 太阳能板的输出电压会高于超级电容器组端电压,确保输

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top