取样电阻(三)
也会导致有电压存在,显示电流是不恒定的.关断电流之后,在温差消失之前,测量结果会显示有明显的电流存在,根据设计和阻值的不同,电流误差能有几个百分点或达到几个安培.而前面提到的精密电阻合金的热电特性和铜非常接近,金属和金属的接触面不会产生热电压,设计者甚至可以忽略珀尔帖效应(Peltier effect).比如使用一只0.3mW的电阻,产生的热电压小于1mV,在关掉100A电流的时侯,热电势产生的电流小于3mA. 三,长期稳定性 对于任何传感器来说,长期稳定性都非常重要.甚至在使用了一些年后,人们都希望还能维持早期的精度.这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变.要使测量元件满足这些要求,可以使用同质复合晶体组成的合金,通过退火和稳定处理的生产制程,以达到基本热力学状态.这样的合金的稳定性可以达到ppm/年的数量级,使其能用于标准电阻. 表面贴装电阻 在140℃下老化1000小时后阻值只有大约-0.2%的轻微漂移,这是由于生产过程中轻微变形而导致的晶格缺损造成的.阻值漂移很大程度上由高温决定,因此在较低的温度下比如+100℃,这种漂移实际是检测不出来的. 四,端子连接 在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的,实际设计中应充分考虑这些因素,可以使用附加的取样端子直接测量金属材料两端的电压.如图3所示,一个四端子的连接将允许测量系统实际用到的阻值为R0,而普通的连接的阻值为R0+2xRCu .例如,10 mm长0.3 mm线径的铜线会增加2.4 mW的RCu阻值,4mm长0.2mm宽 35mm厚度的PCB引线的RCu阻值是10mW. 一个四端子的连接将允许测量系统实际用到的阻值为R0,而普通的连接的阻值为R0+2xRCu 这些例子都表明有缺陷的电阻结构或者布线不合理都会导致非常大的误差,对于10毫欧两端子电阻器,铜连接线占了总阻值的24%,甚至很短的4mm的PCB布线已经使阻值翻倍.电阻材料和铜端子焊接前的结合面清理工艺可以减少端子的附加阻值,但是TCR的影响依然存在. 描述的实例中,铜的比例小到只有2%(相比前面24%的例子),然而TCR却从接近0升高到80ppm/K.对于这样结构的低阻值电阻器,如果在在技术文档中只列出合金材料本身的TCR绝对是不可以被接受也是没有价值的. 四端子连接使得测量系统可以从高可靠性的感测元件直接获取信号 由电子束焊接的铜-锰镍铜电阻实际上具有这样低的端子阻值,通过合理的布线可以作为两端子电阻使用而接近四端子连接的性能.但是在设计时一定要注意取样电压的信号连线不能直接连接取样电阻的电流通道上,如果可能的话,最好能够从取样电阻下面连接到电流端子并设计成微带线. 五, 高负载功率 因为电阻材料的导热性比铜要差,并且大多数电阻使用厚度在20-150mm之间的蚀刻结构的合金箔,因此无法通过电阻材料到端子散热.解决方案之一就是用一层薄的导热良好的粘合剂把电阻合金箔粘合到同样有良好导热性的底板材料上(铜或铝).这种结构可以有效地将热量传导给周围环境,保证了电阻器具有非常低的热内阻(典型值为10-30K/W).(ISA-PLAN系列的电阻使用该技术制造,译者注) 这种结构的电阻可以在非常高的温度下满负荷工作,如图5所示在很高的温度下才出现功率折减;同时,电阻材料的温度可以维持在较低水平,这就可以有效改善电阻的长期稳定性和因温度而引起的阻值变化. 由于自身的低热内阻,只有在高温下才出现功率折减. 对于使用复合结构的极低阻值的电阻器,电阻合金的横截面积和机械强度很大,所以没必要使用底板,这也就意味着电阻材料具有足够低的热内阻,例如对于1毫欧的电阻,热内阻大约10K/W,但是100微欧的电阻,热内阻只有1K/W了.(ISA-WELD系列的电阻使用该技术制造,译者注) 六,低电感 在当今的很多应用中需要测量和控制高频电流,分流器的寄生电感参数也得到了大幅改善.表面贴装电阻器的特殊的低电感平面设计和合金材料的抗磁特性,金属底板,以及四引线连接都有效降低了电阻器的寄生电感. 然而,电路板上的取样端子和电阻组成了一个环状结构,为了避免其间因电流产生的磁场和外围磁场而形成的感应电压,需要特别强调要使取样的信号线形成的区域越小越好,最理想的是微带线设计,例如,与放大器连接的两条取样信号线要设计得尽量靠近或者最好在PCB的不同层面之间平行布线,最差的设计是天线效应会远远超出电阻本身实际电感的影响. 四端子连接的电路构成一个天线回路,对EMI形成的感应电压很敏感. 七,低阻值 四引线设计推荐用于大电流和低阻值应用.通常的做法使用锰镍铜合金带直接冲压成电阻器,但这不是最好的办法.尽管四引线电阻有利于改进温度特性和热电压,但总阻值有时高出实际阻值2到3倍,这会导致
- 取样电阻(一)(03-15)
- 取样电阻(二)(03-15)
- 资深工程师教你计算TL431多路取样电阻(12-26)
- 马达控制三相变频器中相电流Shunt 检测电路设计(06-26)
- 带有输入串联电阻的电流检测放大器的性能详解(01-18)