DSP 在电源设计中的应用
的设计从公式( 1) 可以看出,在相位累加器宽度W 为定值、相位步进值Δθ 为1 时,可得出DDS 的最小输出频率,即DDS 的频率分辨率fr.因此,只需要调整相位步进值Δθ,就可以使DDS 的频率以fr的整数倍输出。
P = 2W ÷ Δθ
式中P 为DDS 输出信号的每个周期的组成点数。
将式( 2) 代入式( 1) ,可得:
fclk = fout × P
在P 足够多且每点波形数据分辨率与P 匹配的前提下,即可忽略DDS 信号输出的高频谐波含量,从而省略硬件设计中的滤波器环节,避免了由滤波器产生的相位偏移。当P = 10000 时,完全可以满足要求。如设计最大输出频率65Hz,可得fclk = 0. 65MHz.
fclk可利用DSP 计数器的中断产生。考虑到DSP 的工作频率均为MHz 的整数倍,所以fclk取值1MHz,更加便于中断的准确产生。
2. 4. 2 相位累加器宽度W 的选取
P = 10000 时,W 取值27 即可满足设计频率调节细度≤0. 01Hz 的要求。但相位累加值θ 在DSP 中定义为4 字节的操作数,W 取值27 时,DSP 需对相位累加值进行上限判断处理后再提取波形数据,从而产生细小的波形畸变并增加一定的运算量。考虑到可利用操作数的自然溢出来减少DSP 的判断及运算操作,所以W 取值32.
2. 4. 3 周期波形点数P 的选取
在不考虑四舍五入取值的前提下,相位累加器的输出值与波形数据表数组下标的函数关系如下:
A = P × θ ÷ 2W
式中A 为波形数据数组下标; P 为波形数据点数; θ为相位累加器输出值。
由于DSP 中没有现成的除法指令,除法是靠被除数与除数之间的移位相减来实现的,采用该函数的算法将增加DSP 的运算量。因此,可以通过事先将P ÷ 2W 作为系数,减少求数组下标运算步骤。但P ÷ 2W 可能为小数,如果取整计算,将使下标出现跳跃性变化,导致输出波形畸变增大。不取整计算时,如使用定点DSP,虽然价格便宜且运算速度较快,但会增加系统运算量。而使用浮点DSP,运算速度较慢且硬件费用会有相对提高。考虑到DSP 要进行多线程的任务工作,需要较快的运算速度,因此选用定点DSP,并对波形数据数组下标的算法进行进一步的改进。
将公式( 4) 中P 的点数由相位调节细度要求的最低点数Pmin调整至大于Pmin的最小的2 的X 次幂。
将P 代入公式( 4) ,简化得:
A = θ /2W-X
在DSP 中,所有的值都用二进制来表示。所以,在公式( 5) 里所有变量的取值均为无符号整数的前提下,A 的获得就简化成了对θ 进行( W – X) 次的右移。
从而大大降低DSP 的运算量。以相位分辨率≤0. 03°为例,P 取值16384 =214,A 的表达式即简化为θ /218.
3 信号测量
信号需要测量频率、有效值、相位三个参量。信号处理电路采用传统的互感器采样加低通滤波。电压信号处理电路比电流信号处理电路,多设置一过零比较的波形变换功能单元,其作用是将电压被测信号由正弦波变换为方波,为信号测量提供周期信号。
3. 1 频率测量
频率测量相对简单,采用传统的脉冲填充法,即DSP 利用周期方波作为中断信号,用DSP 的计数脉冲的频率除以中断间隔内计数器的计数脉冲数,就可获得输出信号的频率。
3. 2 有效值测量
有效值测量即对被测信号进行区域内积分后取平均值。通过RC 电路实现硬件积分,响应速度慢,且增加相应的硬件开销。而利用DSP 的高速计算能力,通过相应计算即可得出有效值,可提高相应速度,节省硬件开销。
正弦波有效值的计算公式:

式中Vm为有效值; T 为采样周期; Um为被测正弦波峰值;ω 为被测正弦波角频率; φ 为被测正弦波初始相位。
积分的计算过程,等价于在积分区间内对被测信号进行足够多的、等间隔采样,并进行累加求和计算。因此,公式( 6) 可变换为:

式中N 为测量周期内的采样次数; Un为采样值。
为保证测量值的准确,被测信号每个周期内的采样次数应≥100.因此,在以标准时钟脉冲fclk( 1MHz) 为计时基准、被测信号最高频率65Hz 时,每次采样间隔应≤153 个标准时钟脉冲。
3. 3 相位测量
相位的测量,借鉴了模拟数字混合乘法器进行矢量测量的原理。模拟数字混合乘法器进行矢量测量的原理如下:
对于正弦信号,矢量测量就是测量相对于标准正弦信号的相位和幅值。如图2 所示,设被测信号V( t) = U( t) sin( ωt + φ) ,两片Rom 中分别存有正弦和余弦函数表,锁相环实现数字sin^( ωt) ,cos^( ωt) 与V( t) 同频同步。模拟信号V( t) 输入到乘法型D/A 的参考电压端,与数字量sin^( ωt) ,cos^( ωt) 在D/
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 电源SOC:或许好用的“疯狂”创意(07-24)
