工程师宝典:几种带不平衡负载的逆变器拓扑结构
本文将就网友比较关心的话题——带不平衡负载的逆变器,对典型的几种拓扑结构进行解析。
Δ/Y变压器的逆变器
Δ/Y变压器三项逆变器拓扑结构
在三桥臂逆变器和负载之间加一个Δ/Y变压器,Δ/Y形连接次级能给不平衡负载所产生的中性电流提供电流通路,而初级则给引起的由负载不平衡或3的倍数次谐波零序电流提供环流通路。而Δ/Y变压器工作在基波频率,因而体积、重量较大,成本较高。
中点形成变压器(NFT)式三相逆变器
为了给不对称负载供电,可以在三相输出端加入一个中点形成变压器,(Neutral Formed Transformer,NFT),如图所示。NFT是将三相三线制电源转换为三相四线制电源的变压器,有两种结构形式:双绕组和单绕组结构。在需要输出隔离时用双绕组变压器,不需要输出隔离时用单绕组变压器(即自耦变压器)可以显著减轻重量。
NFT式三相逆变器的拓扑结构
当三相负载不对称时,不对称负载产生的零序电流将流入变压器绕组,造成零序电压,三相零序电压同相,从而使三相输出电压对称。减小零序阻抗、限制不对称负载是减小三相电压不对称度的措施。也就是说,使用NFT后可以带不对称负载,但是输出电压仍不是完全对称,NFT用在三相负载的不对称度较小的场合较好:另外,NFT是一个低频变压器,工作频率为输出交流电的频率,体积和重量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。
分裂电容式的三相逆变器
用直流输入电源的中点作为中性点也可以带不平衡负载,如图,这时三相逆变器等效成三个独立的半桥逆变器,但由于中性电流直接流过直流分压电容,需要较大电容还存在对分压电容进行电压平衡的问题 ,而且直流电压利用率低。
分裂电容式的三相逆变器拓扑
组合式三相逆变器
组合式三相逆变器拓扑
组合式三相逆变器电路结构如上图所示,它是由三个单相逆变器组合而成,通过三个单相变压器合成三相电路。每相逆变器相互独立,只要控制三相基准正弦波互差120度,将三台输出的地连接在一起作为中线,就可以实现三相四线制输出,它不但具有极强的带不平衡负载能力,且每相还可以分别控制,具有控制简单、易实现模块化结构、在线更换等特点。这种方法比较适合于大功率输出场合,缺点是采用的开关管太多,而且输出需要三个单相变压器。
三相四桥臂逆变器
三相四桥臂逆变拓扑具有不平衡负载处理能力[5-10],第四桥臂与负载中性点连接,可以直接控制中性电流,无须大分压电容,控制灵活直流电压利用率高,可以省去中点形成变压器或Δ/Y变压器,减小逆变器的体积和重量,是当下比较适合处理不平衡负载的拓扑,如下图所示。
三相四桥臂逆变器的拓扑结构
应用场合:
1、逆变电源:例如微型涡轮发电机和燃料电池发电机,它们可以单独结负载运行也可以在网络并联模式下运行向电网输电。这些分布式功率发生器采用四桥臂逆变器来提供有一个中点连接的三相输出,这类设备正快速发展并将有更大的市场需求。
2、有源电力滤波器,它用第四个桥臂来补偿通过中性点的谐波电流。
3、三相功率因数校正变换器,额外的第四桥臂来提供处理线路失真和不平衡,及增强容错能力。
综上所述,三相变换器在处理不平衡负载时,采用四桥臂的拓扑使变换器具有直流电压利用率高,变换器体积重量小,控制灵活等特点。
- 实现智能太阳能管理的微型逆变器应运而生(05-06)
- 只需少量器件的廉价自动复位断路器(07-31)
- 即将普及的碳化硅器件(10-19)
- IR2110驱动电路的优化设计(03-15)
- 关键电源及LED照明应用的最新高能效规范要求、设计挑战及解决方案(12-07)
- 基于FPGA的三相PWM发生器(06-23)