微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 详解半桥软开关逆变式焊机的电路原理

详解半桥软开关逆变式焊机的电路原理

时间:11-30 来源:互联网 点击:

本周期开始,首先,主开关Q1和辅助开关Q01导通时,电流会沿着“+” → “Q1” → “B” →“T4一次侧” → “T5一次侧” → “L2” → “C”。变压器T5将电能传送到二次侧,二次侧整流二极管D16导通,电感L4储能。 主开关Q1开通时,由于饱和电感L2的作用,流过饱和电感L2和主开关Q1的电流会从零开始线性上升,故主开关Q1属于零电流开通。主开关Q1开通后,B点电压等同于直流母线“+”的电压U(略去主开关Q1导通压降),因此辅助开关Q01两端没有电压,同样也没有电流流过,故辅助开关Q01属于零电压、零电流开通。过后,主开关Q1会PWM关断,由于二次侧电感L4电流不能突变,使得二次侧整流二极管D16电流逐步分流到整流二极管D15上,最终,两组整流二极管同时导通,中频变压器T5一次侧和二次侧均被短路。

主开关Q1关断后,饱和电感L2和中频变压器T5的漏感以及逆变电路分布电感中电流不能突变,继续沿着“A” →“Q01” →“Q02体内二极管” →“B” →“T4一次侧” → “T5一次侧” → “L2” →“C”的路径流动,电容C36被线性充电,电容C37被线性放电,A点和B点电压缓慢下降。主开关Q1两端电压由零开始线性上升,所以主开关Q1属于零电压关断,随着时间的推移,电容C36被充上电压值为U的母线电压,电容C37放电到电压值为零,此时饱和电感L2和变压器T5的漏感以及逆变电路分布电感的电流转变路径,沿着“-” →“Q2体内二极管” → “B” → “T4一次侧” → “T5一次侧” → “L2” → “C”继续流动,此时使辅助开关Q01关断,可见Q01属于零电压、零电流关断。

这个周期结束后,电容C37已放完电荷,端电压为零;电容C36已充满电荷,端电压为直流母线电压U。

接着下一个周期开始,主开关Q2和辅助开关Q02同时道通,电流会沿着“C” → “L2” → “T5一次侧” → “T4一次侧” → “B” →“Q2” →“-”。变压器T5将电能传送到二次侧,二次侧整流二极管D15导通,电感L4储能。 主开关Q2开通时,由于饱和电感L2的作用,流过饱和电感L2和主开关Q2的电流会从零开始线性上升,故主开关Q2属于零电流开通。主开关Q2开通后,B点电压等同于直流母线“-”的电压(略去主开关Q2导通压降),因此辅助开关Q02两端没有电压,同样也没有电流流过,故辅助开关Q02属于零电压、零电流开通。过后,主开关Q2会PWM关断,由于二次侧电感L4电流不能突变,使得二次侧整流二极管D15电流逐步分流到整流二极管D16上,最终,两组整流二极管同时导通,中频变压器T5一次侧和二次侧均被短路。

主开关Q2关断后,饱和电感L2和中频变压器T5的漏感以及逆变电路分布电感中电流不能突变,继续沿着“C” →“L2” →“T5一次侧” → “T4一次侧” → “B” →“Q02” → “Q01体内二极管” →“A”的路径流动,电容C37被线性充电,电容C36被线性放电,A点和B点电压缓慢上升。主开关两两端电压由零开始线性上升,所以主开关Q2属于零电压关断,随着时间的推移,电容C37被充上电压值为U的母线电压,电容C36放电到电压值为零,此时饱和电感L2和变压器T5的漏感以及逆变电路分布电感的电流转变路径,沿着“C” →“L2” →“T5一次侧” → “T4一次侧” → “B” →“Q1体内二极管” →“+”继续流动,此时使辅助开关关断,可见Q02属于零电压零电流关断。

如此周而复始,就实现了半桥软开关逆变功能。可以看出,两组主开关工作于零电流开通、零电压关断的状态,实现了主开关的软开关功能,达到了减小主开关电压电流应力,减小了引起电磁干扰的开关时的电压电流变化率,减小了主开关器件因开关损耗带来的发热热量。同时,用于协同创造软开关条件的辅助开关更是工作在零电压、零电流开通和零电压、零电流关断状态。因此,两组辅助开关只承受很小的开关电压、电流应力,引起电磁干扰和因开关损耗带来的发热热量都很小。满足半桥软开关逆变功能的驱动脉冲电路实现

参见图三

详解半桥软开关逆变式焊机的电路原理

U1为一电流型PWM集成电路,其1脚为软启动端,外接分压电阻R13、R26和电容C14组成软启动定时电路;2脚为5.1V内部基准稳压电源;3脚和12脚接电源地;4脚为一次侧脉冲电流信号输入端;5脚为误差信号电压输入端,5脚6脚和7脚内部为一运放电路,5脚为该运放输入同相端,6脚为该运放电路反相端,7脚为该运放输出端,6脚7脚相连,内部运放接成了以5脚为输入端的射极跟随器;8脚外接电容C17为PWM定频电容;9脚外接电阻R31为PWM定频电阻;10脚为同步信号输出端;11脚和14脚为PWM脉冲信号的两个互补输出端;13脚和15脚为电源供电端;16脚为脉冲关断端。从11脚和14脚输出的相位相差

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top