微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 工程师分析高速数字电路中电源系统的电磁兼容

工程师分析高速数字电路中电源系统的电磁兼容

时间:01-11 来源:互联网 点击:

电源系统的电磁干扰方式

电源干扰的复杂性原因之一是包含了许多可变的因素。首先,电源干扰可以以“共模”或“差模”方式存在,这是根据电磁干扰噪声对于电路作用的形态来进行划分的,如图1所示。任何电路中都存在共模和差模电流。共模和差模电流决定了传播的电磁能量的大小。如果给定一对导线,一个返回参考平面,那么这两种模式中至少有一种将会存在,但通常是共存。一般来说,差模信号携带数据或有用信息,而共模信号是差模信号的负面效果,不包含有用信息,是辐射的主要来源,解决起来相当的麻烦。

电源系统的电磁干扰类型

造成电源干扰复杂性的第二个原因是干扰表现的形式很多,从持续期很短的尖峰干扰直至电网完全失电,其中也包括了电压的变化(如电压跌落、浪涌和中断)、频率变化、波形失真(包括电压和电流的)、持续噪声或杂波,以及瞬变等。我们根据国内外的抗扰度测试的一系列标准和实际应用中常常出现的问题,总结了电源干扰的常见起因,如表1所示。

工程师分析高速数字电路中电源系统的电磁兼容

电磁干扰的途径

从电磁兼容标准来说,电磁干扰基本上被分成传导噪声和辐射噪声。这也是一种直观分类,一种是接触性的干扰,一种是非接触性。电磁干扰就其实际作用于电路的机理有四种传输方式:传导耦合,电磁场耦合,磁场耦合和电场耦合,如图1所示。电源系统的板级电磁兼容设计

在实际的电路设计中,要达到这两个目的已经越来越复杂了。在高速数字电路系统中,信号完整性问题变得非常的突出。一个非常重要的问题就是电源分配系统的轨道塌陷(Rail Collapse)。由于电源技术呈现出低电压、开关电源开关频率高频化等一些不利于解决信号完整性的状况,电源完整性被作为一个新的研究方向被提了出来。 通常电源完整性问题主要有两个途径来解决:优化电路板的层叠设计及布局布线和增加去耦电容。

去耦电容的PCB设计

在印制电路板上,芯片-盘垫-走线所形成的环路电流所造成的电感则大得多。连接去耦电容到电源轨道的走线电感要比电容上的寄生电感明显要大。通常的经验数据是走线电感为10nH/in.。因此当其被安装到这种高电感的安装结构中,一个低电感电容的高频去耦性能会显著的降低。普通的表贴电容的ESL基本都是nH级的,而走线、焊盘设计所带来的寄生电感的增加要比电容自身的 ESL 明显得多。在现在的高频去耦应用中,最小化环路电感也是至关重要的。一种最小化环路电感的方式是减少环路区域的大小。对布局来说,将电源轨道走得越近越好,甚至是将电源轨道走在IC之下,这样就可以减少环路区域的面积。尽管如此,对高频去耦来说,其性能还是会受限于走线和电源轨道的电感。通过使用过孔在盘垫中的方式,环路电感还可以进一步的降低。

在最优的盘垫设计下,主导电感的是过孔和电容的高度。过孔就像是一个天然的电感线圈一样。过孔的电感值正比于其长度和直径。通过一个过孔(8mil)穿过60mil的电路板连接一个去耦电容能够增加1nH的电感。此外,电流传送的垂直距离会增加环路的大小从而增加电感量。最优的盘垫设计和最小化电容顶部到电源和地层的距离,这样和去耦电容相关的电感就被减到最小。

结束语

快速的信号边沿变化使得电路信号产生振铃、反射、串扰、地弹等许多信号完整性问题。而且,这个问题越来越严重。随着电路中器件和芯片工作环境的恶化,电源受到的影响非常严重,电源系统的电磁兼容性设计变得更加富有挑战性和研究价值。希望本文能为广大设计者带来启迪。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top