微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 工程师详解非隔离式开关电源PCB布局设计技巧

工程师详解非隔离式开关电源PCB布局设计技巧

时间:01-23 来源:互联网 点击:

端放置高频陶瓷电容CHF。

工程师详解非隔离式开关电源PCB布局设计技巧

图5 显示的是升压转换器中的热回路与寄生PCB电感(a);为减少热回路面积而建议采用的布局(b)

图5是升压转换器中脉冲电流回路的一个布局例子。此时关键在于尽量减小由开关管QB、整流二极管D和高频输出电容CHF形成的回路。图6提供了一个同步降压电路的例子,它强调了去耦电容的重要性。图6a是一个双相12VIN、 2.5VOUT/30A(最大值)的同步降压电源,使用了LTC3729双相单VOUT控制器IC,在无负载时,开关结点SW1和SW2的波形以及输出电感电流都是稳定的(图6b)。但如果负载电流超过13A,SW1结点的波形就开始丢失周期。负载电流更高时,问题会更恶化(图6c)。

工程师详解非隔离式开关电源PCB布局设计技巧

在各个通道的输入端增加两只1μF的高频陶瓷电容,就可以解决这个问题,电容隔离开了每个通道的热回路面积,并使之最小化。即使在高达30A的最大负载电流下,开关波形仍很稳定。高DV/DT开关区

图2和图4中,在VIN(或VOUT)与地之间的SW电压摆幅有高的dv/dt速率。这个结点上有丰富的高频噪声分量,是一个强大的EMI噪声源。为了尽量减小开关结点与其它噪声敏感走线之间的耦合电容,你可能会让SW铜箔面积尽可能小。但是,为了传导大的电感电流,并且为功率MOSFET管提供散热区,SW结点的PCB区域又不能够太小。一般建议在开关结点下布放一个接地铜箔区,提供额外的屏蔽。

如果设计中没有用于表面安装功率MOSFET与电感的散热器,则铜箔区必须有足够的散热面积。对于直流电压结点(如输入/输出电压与电源地),合理的方法是让铜箔区尽可能大。

多过孔有助于进一步降低热应力。要确定高dv/dt开关结点的合适铜箔区面积,就要在尽量减小dv/dt相关噪声与提供良好的MOSFET散热能力两者间做一个设计平衡。

功率焊盘形式

注意功率元件的焊盘形式,如低ESR电容、MOSFET、二极管和电感。

对于去耦电容,正负极过孔应尽量互相靠近,以减少PCB的ESL。这对低ESL电容尤其有效。小容值低ESR的电容通常较贵,不正确的焊盘形式及不良走线都会降低它们的性能,从而增加整体成本。通常情况下,合理的焊盘形式能降低PCB噪声,减小热阻,并最大限度降低走线阻抗以及大电流元件的压降。

大电流功率元件布局时有一个常见的误区,那就是不正确地采用了热风焊盘(thermal relief)。非必要情况下使用热风焊盘,会增加功率元件之间的互连阻抗,从而造成较大的功率损耗,降低小ESR电容的去耦效果。如果在布局时用过孔来传导大电流,要确保它们有充足的数量,以减少阻抗。此外,不要对这些过孔使用热风焊盘。

控制电路布局

使控制电路远离高噪声的开关铜箔区。对降压转换器,好的办法是将控制电路置于靠近VOUT+端,而对升压转换器,控制电路则要靠近VIN+端,让功率走线承载连续电流。

如果空间允许,控制IC与功率MOSFET及电感(它们都是高噪声高热量元件)之间要有小的距离(0.5英寸~1英寸)。如果空间紧张,被迫将控制器置于靠近功率MOSFET与电感的位置,则要特别注意用地层或接地走线,将控制电路与功率元件隔离开来。

控制电路应有一个不同于功率级地的独立信号(模拟)地。如果控制器IC上有独立的SGND(信号地)和PGND(功率地)引脚,则应分别布线。对于集成了MOSFET驱动器的控制IC,小信号部分的IC引脚应使用SGND。

信号地与功率地之间只需要一个连接点。合理方法是使信号地返回到功率地层的一个干净点。只在控制器 IC下连接两种接地走线,就可以实现两种地。

控制IC的去耦电容应靠近各自的引脚。为尽量减少连接阻抗,好的方法是将去耦电容直接接到引脚上,而不通过过孔。

回路面积与串扰

两个或多个邻近导体可以产生容性耦合。一个导体上的高dv/dt会通过寄生电容,在另一个导体上耦合出电流。为减少功率级对控制电路的耦合噪声,高噪声的开关走线要远离敏感的小信号走线。如果可能的话,要将高噪声走线与敏感走线布放在不同的层,并用内部地层作为噪声屏蔽。

空间允许的话,控制IC要距离功率MOSFET和电感有一个小的距离(0.5英寸~1英寸),后者既有大噪声又发热。

LTC3855控制器上的FET驱动器TG、BG、SW和BOOST引脚都有高的dv/dt开关电压。连接到最敏感小信号结点的LTC3855引脚是:Sense+/Sense-、FB、ITH和SGND,如果布局时将敏感的信号走线靠近了高dv /dt结点,则必须在信号走线与高dv/dt走线之间插入接地线或接地层,以屏蔽噪声。

在布放栅极驱动信号时,采用短而宽的走线有助于尽量减小栅极驱动路径中的阻抗。

如果在BG走线下布放了一个PGND层,低FET的交流地返回电流将自动耦合到一个靠近BG走线的路径中。交流电流会流向它所发现的最小回路/阻抗。此时,低栅极驱动器

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top