经验窍门:教你设计低功耗、低噪声电源电路
定电压相同的输出电压。
PFM控制时,当输出电压达到在设定电压以上时即会停止开关,在下降到设定电压前,DC/DC变换器不会进行任何操作。但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压。PWM控制也是与频率同步进行开关,但是它会在达到升压设定值时,尽量减少流入线圈的电流,调整升压使其与设定电压保持一致。
与PWM相比,PFM的输出电流小,但是因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗的电流就会变得很小。因此,消耗电流的减少可改进低负荷时的效率。PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。
若需同时具备PFM与PWM的优点的话,可选择PWM/PFM切换控制式DC/DC变换器。此功能是在重负荷时由PWM控制,低负荷时自动切换到 PFM控制,即在一款产品中同时具备PWM的优点与PFM的优点。在备有待机模式的系统中,采用PFM/PWM切换控制的产品能得到较高效率。
高频的优点 :
通过实际测试PWM与PFM/PWM的效率,可以发现PWM/PFM切换的产品在低负荷时的效率较高。至于高频方面,通过提高DC/DC变换器的频率,可以实现大电流化、小型化和高效率化。但是,必须注意的是只有通过线圈的特性配合才可以提高效率。因为当DC/DC变换器高频化后,由于开关次数随之增加的原因,开关损失也会增大,从而导致效率会有所降低。因此,效率是由线圈性能提升与开关损失增加两方面折衷决定的。通过使用高效率的产品,相对可使用较低电感值的线圈,可以使用小型线圈,即使使用的是小型线圈也可得到相同的效率及输出电流。
外接器件选择:
除了需要关注DC/DC变换器本身的特性外,外接组件的选择也不能忽视。外接组件中的线圈、电容器和FET对于开关电源特性有着很大影响。这里所谓的特性是指输出电流、输出纹波电压及效率。
线圈:如果需要追求高效率,最好选择直流电阻和电感值较小的线圈。但是,如果电感值较小的线圈用于频率较低的DC/DC,就会超过线圈的额定电流,线圈会产生磁饱和现象,引起效率恶化或损坏线圈。而且如果电感值太小,也会引起纹波电压变大。所以在选择线圈时,请注意流向线圈的电流不要超过线圈的额定电流。在选择线圈时,需要根据输出电流、DC/DC的频率、线圈的电感值、线圈的额定电流和纹波电压等条件综合决定。
电容:输出电容的容量越大,纹波电压就越小。但是较大的容量也意味着较大的电容体积,所以请选择最适合的容量。
三极管:作为外接的三极管,与双极晶体管相比,因FET的开关速度比较快,所以开关损耗会较小,效率会更高一些。 DC-DC基本原理:
DC-DC电源是一种比较新型的电源。它具有效率高,重量轻,可升、降压,输出功率大等优点。但是由于电路工作在开关状态,所以噪声比较大。 通过下图,我们来简单的说说降压型开关电源的工作原理。如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容 C等构成。当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。通过控制开关闭合跟断开的时间(即PW M——脉冲宽度调制),就可以控制输出电压。如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。
在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。
在实际的开关电源中,开关K由三极管或场效应管代替。当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。这就是开关电源效率高的原因。
升压式DC/DC变换器原理:
升压式DC/DC变换器主要用于输出电流较小的场合,只要采用1~2节电池便可获得3~12V工作电压,工作电流可达几十毫安至几百毫安,其转换效率可达70%-80%。
升压式DC/DC变换器的基本工作原理如图所示。
升压式DC/DC变换器原理:
升压式DC/DC变换器主要用于输出电流较小的场合,只要采用1~2节电池便可获得3~12V工作电压,工作电流可达几十毫安至几百毫安,其转换效率可达
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 电源SOC:或许好用的“疯狂”创意(07-24)