微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 汽车动力电池组的参数与特性分析、均衡管理

汽车动力电池组的参数与特性分析、均衡管理

时间:12-07 来源:互联网 点击:

曲线进入马尾下降阶段,极化阻抗增大,输出效率降低,热耗增大,接近终止电压时停止放电.

  上述过程用恒流特性模拟负载电机,实际汽车在行使中,电机输出功率的变化很复杂,电流双极性变化,即使匀速行使,路面颠簸、微小转向都使输出功率实时变化,在短时间段里,可以用恒流放电模拟分析,总之大的方向是放电,偶尔有不规则的零脉冲(无逆变功能)或负脉冲(有逆变功能,电池被充电)出现.

  4过放电

  考虑组内单体电池,必有相对的过放电情况.在放电后期,电压接近马尾曲线,组中单体容量正态分布,电压分布很复杂,容量最小的单体电压跌落得也就最早、最快,若这时其它电池电压降低不是很明显,小容量单体电压跌落情况被掩盖,已经被过度放电

  观察单体过放情况,进入马尾曲线以后,若电流持续较大,电压迅速降低,并很快反向,这时电池被反方向充电,或称被动放电,活性物质结构被破坏,另一种副反应很快发生,过一段时间,电池活性材料接近全部丧失,等效为一个无源电阻,电压为负值,数值上等于反充电流在等效电阻上产生的压降,停止放电后,原电池电动势消失,电压不能恢复,因此,一次反充电足以使电池报废.

  组中单体过放容易发生不易控制,电机控制器的限压限流办法都不起有效作用,电池输出功率的变化产生的欧姆、极化电压波动足以淹没单体电压跌落信号,组电压监视失去意义.

  5经济速度与续驶里程

  传统汽车以经济速度行驶耗油最省,用百公里耗油量评价,经济速度由发动机效率、动力传动效率和摩擦力决定,电动汽车也有经济速度,由电池使用效率、电动机和控制器效率、摩擦阻力决定,经济速度与电池组内阻有直接关系,在一定范围内变化.以经济速度行驶,电动汽车能达到最大的续驶里程.固定整车和电动机,续驶里程可以考察动力电池组的能量供给能力,经济速度反映了电池组功率提供能力,电动汽车希望动力电池组能提供大容量和高功率.

  6加速与爬坡

  电动汽车在加速和爬坡时输出功率大,电池组放电电流大,电压跌落幅度也大,输出效率下降,欧姆损耗增大,另一方面,电压下降也会导致电机效率降低,工作条件恶劣,可能发生过强度放电,即超出电池电流输出能力,此时电池组处于过载使用.避免过载的措施:使用功率较大的电池组;限电压、电流、功率或其组合限制行使;平稳行使,限制加速度.

  7刹车制动与逆变

  只要加速度为负值,传动机构就可以带动发电机发电,回馈电能可以给电池组充电,将机械动能转化为化学能存储使用,瞬间逆变功率与输出功率属同一数量级,取决于发电机逆变效率,加速时有过强度放电,逆变时就有可能存在过强度充电.

  8先进的电池组使用方法

  过充过放对电池的损害都是致命的,不同之处仅在于过充产生大量气体、易自燃和爆炸、表象剧烈,过放外观变化和缓、但失效速度却极快,在正常使用中都应严格避免出现

  鉴于相同原材料、同批次的单体电池,容量、内阻、寿命等性能参数符合正态分布并且离散程度有限;鉴于在相同的电流激励条件下,单体电池电压变化过程的一致性渐进逼近其它性能参数的一致性,其中最重要的参数是荷电程度;鉴于电池在未曾历经过过充、过放的损害,在其生命期里不容易提前失效,可以推断,如果在充放电过程中通过能量变换的办法实施电池组中单体电压的均衡控制,使单体电压趋于一致,那么单体的相对荷电程度也趋于一致,可以实现同时充足电、也同时放空电,进而,电池组的寿命应接近于单体电池的平均寿命.

  基于均衡控制,可进一步研究先进的充电方法.目前的限压限流方法,无论在充电速度还是效果上都不够科学,充电初期,极化效应并不激烈,电池的电流接受能力最强,充电电流还应该加大,恒流后期电池温升、内压增大,电流已经超出电池接受能力,电流应该减小,同时,极化作用、趋肤效应降低了材料反应的活性,可利用反向电流脉冲肖弱这些不利影响.

  动力电池组的均衡控制和管理

  要实现单体电压的均衡控制,均衡器是电池管理系统的核心部件,离开均衡器,管理系统即使得到了电池组测量数据,也无所作为,也就无所谓管理.随着电动汽车技术的不断发展,电池组均衡装置的需求已经迫在眉睫,已有许多研究,国外已有报道,如德国KaiserseLautern大学,日本本田公司等,国内技术尚未成熟.

  1断流与分流

均衡器按能量回路处理的方式分断流和分流,断流指在监控单体电压变化的基础上,在满足一定条件时把单体电池的充电或负载回路断开,通过机械触点或电力电子部件组成开关矩阵,动态改变电池组内单体之间的连接结构,可能的断流部件有机械、继电器、半导体.电动汽车

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top