微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 太阳能逆变电源基本设计要点与方法总结

太阳能逆变电源基本设计要点与方法总结

时间:12-08 来源:互联网 点击:

进行详细介绍。

  系统效率可能成为了太阳能逆变器最重要的设计考虑因素,是不同竞争厂商之间优劣的区分要素。一台20kWp安装设备每天平均输出电能为190kWh,若其效率从95%提高到96%,如果强制入网电价 (feed-in tariff)按0.40美元/ kWh,并以10年寿命周期来计算,其所节省约为逆变器自身成本的一半,因此效率的重要性不言而喻。

  一旦输出功率确定了,则最高转换效率和最低功率器件损耗讲的就是一回事。考虑到光伏面板把太阳能转换为电能的效率很低(一般只有15%),则能量逆变器的效率在减小太阳能面板面积和整个系统的体积方面就很有意义。除此原因外,器件的功率损耗将在硅裸片上产生热从而导致温升,因此,必须有效散热。这些损耗导致的热过力是高可靠设计必须竭力应付的且必须要用到散热器。众所周知,散热器个头大、价格高;另外,其采用诸如风扇等器件使散热器的可靠性不高。换句话,尽可能小的功率损耗不仅节省能量,还可以提升系统可靠性,使系统更紧凑并降低了成本。

  由于现有逆变器的第一次故障平均时间约是5年,因此太阳能逆变器成为造成光伏系统诸多故障的主要原因。为提升逆变器设计的可靠性,需考虑如下因素并采取相应措施,包括:低损耗功率器件和开关电路、更新的封装技术、对电解电容器的替代、过设计、器件的冗余以及对常见失效模式和原因等的深入分析。

  Microsemi(美高森美)半导体的应用工程师经理钱昶指出,电和热方面的过载是导致失效的两个原因,选择能效更高的器件和电路会降低逆变器自身的功耗并进而降低功率器件的结温且同时降低了热过力;过设计是使电和热应力远远低于器件所能承受水平的另一条途径;而冗余设计使器件交替工作,从而分摊降低了每一器件所受的压力。

  过设计和冗余设计将显著增加成本,而这是制造商所不希望的。因此,更可行、成本更低的作法是研究失效模式和成因然后将该信息回馈至产品进行重新设计。当然,这就需要对大量产品进行现场测试以便发现并验证故障机制和模式。

  此外,钱昶认为太阳能逆变器可靠性设计的其它挑战还应包括:具有低可靠性的电解电容并且以合理价格找到不同种类高压、大容量电容器的技术难度;缺少结构化方法进行产品规划和质量控制的不成熟制造工艺也将损害可靠性;另外,工作在恶劣环境下(极低或极高温、潮湿和曝晒)也为可靠性设计带来挑战。

  飞兆半导体技术行销助理经理Eric Zhang也认为系统所需的母线电容的确成为影响可靠性的最重要因素,因此设计通常会选择电解电容器,因为它耐受日常温度变化循环,并可在高温下运作。设计人员还必须了解将要并网发电之太阳能电池的额定输出功率,从而选择合适的拓扑(请参考图1),并使用具有足够耐压的功率开关器件。

  而英飞凌的高级工程师Jerome Lee则建议,可通过降低电解电容中的纹波电流以延长逆变器的使用寿命。当开关的高频操作与高效率目标发生冲突,需要考虑电容器组是否过大或是出现多相系统。而除了电解电容老化问题,他认为电压额定值下降以及散热效果是影响也是太阳能逆变器可靠性的主要因素,最具成本性能优化的是使用600V级别的功率器件。这时可以通过使用过压保护系统或降压变换器作为输入级以将电压应力减少到500V以下。

  IGBT抑或MOSFET

  半导体器件影响逆变器设计的主要因素可以概括为:器件击穿电压、封装、热阻(从结到外壳)、电流等级、导通电压或导通阻抗、寄生电容、开关速度和成本。而设计人员在为太阳能逆变器设计选择功率逆变器件时又将有具体的考虑呢?

就MOSFET和IGBT来说,其选用决策视性能和成本间的权衡而定。一般说,因IGBT的电流更大(是MOSFET的两倍多),所以采用IGBT方案的成本比采用MOSFET的成本低。除成本方面的考虑外,器件性能可由功率损耗表度,而功率损耗可分为:导通和开关两类。作为以少数载流子为基础的器件,在大电流下,IGBT具有更低的导通电压,也就意味着更低的导通损耗。但MOSFET的开关速度更快,所以开关损耗比IGBT低。因此对于要求更低开关频率且更大电流的

应用来说,选择IGBT更为适合而且具备更低成本优势。另一方面,MOSFET有能力满足高频、小电流应用,特别是那些开关频率在100kHz以上的能量逆变器模块的需要。虽然从器件成本角度看,MOSFET比IGBT贵,但其处理更高开关频率的能力将简化输出滤波器的磁设计并将显著缩小输出电感体积。

基于上述原因,更多的制造商因此倾向于在中高水平的能量逆变器中采用IGBT。而据Microsemi的钱昶介绍,该公司的MOS8 IGBT在静态和动态测试(最小化的总体功率损耗)方面的优化性

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top