一种无频闪无电解电容AC-DC LED 驱动电源中减小LED电流畸变的方法
值的变化情况,如图7 所示。在负载和直流侧电容电压恒定的情况下,随着电容的减小,占空比低频分量迅速增大,因此可以考虑根据占空比的表达式设计非线性的控制器,在不影响系统稳定性的前提下,达到双向变换器正弦电流基准的无差跟踪,降低占空比非线性对LED 输出电流的影响。
3.2 改进型控制策略的实现
变占空比控制的思想已经应用于高功率因数的DCM PFC 变换器[15],将此方法应用于双向变器的控制电路中。观察式(15),如果在工频周期内,使双向变换器开关管Q1 的占空比按照理论值变化,将会使双向变换器直流侧电容电压按照理论形式变化,那么输入电流也会以两倍输入频率的交流基准变化。由于双向变换器开关管Q1 和Q2 是互补导通的,那么为了实现简单,这里选择控制开关管Q2,由式(15)可以得到其占空比d'为:
4.仿真验证
为了验证改进型控制策略可以减小双向变换器电流跟踪的稳态误差,减小LED驱动电流的畸变,用Saber软件搭建了一个采用改进型控制策略的无频闪无电解电容AC-DC LED驱动电源。其主要参数如下:交流输入电压为220 VAC/50Hz,满载输出平均电流Io=0.7A,输出电压Vo=48V,双向变换器电感为1.4mH,直流侧电容为4.7μF,其电压的平均值为150V,锯齿波幅值Vm=3V。图9和图10分别给出了满载和半载情况下滤除高频分量的副边电流、双向变换器的电感电流、LED输出电流和储能电容电压的仿真波形。可以发现满载 输出电流的峰峰值为110mA,是平均值700mA的15.7%;半载时输出电流的峰峰值为22mA是平均值350mA的6.3%,LED输出电流畸变程度较大。
图11和图12分别给出了采用改进型控制策略时满载和半载下的仿真波形,此时满载情况下输出电流的峰峰值为13mA,是平均值的1.9%;半载情况下输出电流的峰峰值为7mA,是平均值的2.0%。图13和图14分别给出了改进前后满载和半载输出电流的频谱,可以发现采用改进型的控制策略可以大大减小LED驱动电流中的低频分量,抑制LED输出电流的畸变,仿真结果验证了此方法的正确性和有效性。
5.结论
本文对无频闪无电解电容AC-DC LED 驱动电源
中的Buck/Boost 型双向变换器进行了稳态分析,分析
了直流侧电容电压纹波造成的双向变换器非线性问
题,为了减小双向变换器输入电流对两倍工频交流电
流基准的跟踪误差,提出了一种改进型变占空比的非
线性控制策略,改善了原先LED 驱动电流畸变的问
题。
参考文献
[1] Azevedo I, Morgan M, Morgan F. The transition to
solid-state lighting. Proceedings of IEEE, 2009, 97(3):
481–510.
[2] Useful Life: Understanding LM-80, Lumen maintenance,
and LED fixture lifetime. Available:
http://www.colorkinetics.com/support/whitepapers/LEDLi
fetime.pdf.
[3] Electromagnetic compatibility, Part 3, Section 2. Limits
for harmonic current emissions (equipment input
current≤16A per phase), IEC 61000-3-2.
[4] Aluminum electrolytic capacitor application guide.
Available:
http://www.cde.com/catalogs/AEappGUIDE.pdf.
[5] Wang B, Ruan X, Xu M, Yao K. A method of reducing the
peak-to-average ratio of LED current for electrolytic
capacitor-less ac/dc drivers. IEEE Trans. Power
Electronics, 2010, 25(3): 592–601.
[6] Gu L, Ruan X, Xu M, Yao K. Means of eliminating
electrolytic capacitor in AC/DC power supplies for LED
lightings. IEEE Trans. Power Electronics, 2009, 24(5):
1399–1408.
[7] Spiazzi G, Buso S, Meneghesso G. Analysis of a
high-power-factor electronic ballast for high brightness
light emitting diodes. Proc. IEEE Power Electron. Spec.
Conf. (PESC), 2005: 1494–1499.
[8] E. Mineiro S′a Jr., Postiglione C, Antunes F, Perin A. Low
cost ZVS PFC driver for power LEDs. Proc. IEEE Ind.
Electron. (IECON), 2009: 3551–3556.
[9] Pinto R, Cosetin M, Silva M, Denardin G, Fraytag J,
Campos A, Prado R. Compact emergency lamp using
power LEDs. Proc. IEEE Ind. Electron. (IECON), 2009:
3494–3499.
[10] 王蓓蓓. 无电解电容的高亮度LED驱动电源研究. [硕士
学位论文]. 南京航空航天大学, 2009.
[11] Ozpineci S, Tolbert L. Evaluation of a current source
active power filter to reduce the DC bus capacitor in a
hybrid electric vehicle traction drive. Proc. IEEE Energy
Convers. Congr. Expo. (ECCE), 2009: 1185–1190.
[12] Chen W, Hui R. E
AC-DCLED驱动电 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)