微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 便携式媒体播放器的电源管理分组技术

便携式媒体播放器的电源管理分组技术

时间:04-07 来源:电子产品世界 点击:

(TS) 测量电池的温度,避免在 0 ℃~40℃ 范围之外进行充电,从而尽可能延长电池的工作时间。

不管电源来自 USB 端口还是 AC/DC 墙上适配器,充电器都应对充电工作加以管理。就某些应用而言,充电 IC 的电力来自高压前端 DC/DC,电池可直接从高压电源进行充电,如轿车或卡车所用的电池就是这种情况。输入引脚上的额定输入电压最大可达 18 V,这不仅能避免系统在DC 电源线路上出现过压峰值,而且还能使用价格较低的非稳压墙上电源。充电 IC 可以确定进入电池的实际充电电流和系统所用的电流。因此,电池充电和系统运行同时进行的情况下,充电过程也不会出现非正常终止问题。上述解决方案实现了动态的电源管理,在系统和电池间合理分配可用的 DC 输入功率。如果系统电流上升,电池充电电流会自动降低,反之亦然,从而满足整体供电量的要求。这有助于优化成本,使墙上电源也能满足系统整体的平均用电需要,兼顾电池充电和应用运行,而不是必需采用满足最严格用电条件的电源。

我们在微型的 3.5mm x 4.5mm QFN 封装中集成了所有必需的充电控制和电源通道电源晶体管,从而使解决方案的整体尺寸达到了最小化。此外,我们还可使媒体播放器系统在电池充电器给电池充电的同时实现睡眠模式下工作。充电器将根据检测到的最小电流终止充电,并提供可编程定时器,进一步提高安全性。

我们可用电池电量监测计来精确测定剩余电池电量,从而进一步改善电池管理。这样,处理器就能有效采用低功耗模式,并在需要充电时提醒用户,从而更好地管理媒体播放器的功耗。

媒体播放器的功率转换主要是通过转换 DC 稳压器来实现功率效率最大化。我们认为,就稳压工作而言,线性稳压器解决方案具有体积小和成本低等优势。这种解决方案成本较低,对低电流和低稳压差分而言效率也比较高,但如果电流超过 300mA 到 400mA 的话,就会因为功耗太高而需要占地很大且价格昂贵的散热片。如果输出电流较高且输入至输出的电压差分很大,就会发生此类问题。假设我们用 3.6 V 的锂离子电池提供 1.2 V 的内核电压,线性稳压器这时的工作效率只有 33%,电池电力大部分都变成散热消耗掉了。DC/DC 转换器的工作效率实际高达 90% 以上,其功耗仅为低降压稳压器 (LDO)消耗的一小部分。

图 3 给出了同一 IC 封装中采用几个电源转换器的高效集成式功率转换机制实例。为使处理引擎采用低压内核电源,主系统电压为 3.3 V,我们采用带 FET 的全集成同步 DC/DC 降压转换器来实现最大功率效率,并尽可能减少外部组件数。采用该解决方案时,无需使用占地较大的散热片。相对 DC/DC 控制器解决方案而言,全集成的 DC/DC 转换器采用片上转换 FET 并实现内部补偿机制。这就是说,设计工程师不必选择外部晶体管,也不必采用昂贵而难用的设计软件来分析补偿与稳定条件。组件选择非常方便,我们只需根据数据表单,采用推荐的电感器即可。

最多4个线性稳压器为音频、RF 及其他子组件提供低电流辅助电源,这有助于减少组件数,针对不同类型的电压轨,在成本、大小和效率之间实现最佳平衡。

集成电源管理解决方案具有一些能够显著节省板级空间的独特特性。由于集成了所有开关晶体管,因此电路只需要两个电感器和少数几个电容器。2.25 MHz高开关频率使电感器尺寸减小到 2.2mH,从而能使用高度还不足 1 毫米的芯片电感器,而转换效率仍高达 90% 以上。为进一步降低功耗,DC/DC 稳压器还提供自动 PFM/PWM 模式转换功能,在很大负载范围上,都能最大化转换效率。低负载电流运行时,转换器可进入脉冲频率调制 (PFM) 模式,而负载电流大于 50 mA 时,脉冲宽度调制 (PWM) 控制方案则能对其提供支持。

4 个线性稳压器和 1 个输出电容器即可提供低电流电源。为尽可能提高设计灵活性,该器件还提供串行接口,以便实现稳压器电压的灵活编程,这样处理系统就能控制自己的电源,并调节电源电压以优化电源性能。该器件采用小型QFN封装,这样IC的面积可减至4mmx4mm。

  结语

便携式媒体播放器在便携式电子设备市场中的份额不断上升。消费者希望小型设备能够提供更多功能,且实现更长的工作时间。电池技术与低功耗半导体组件的不断发展可以帮助工程师逐步满足上述要求。与此同时,电源设计人员在电子产品设计中发挥关键作用。精确监测电池容量有助于充分利用电池全部电力,与高效的功率转换相结合,有助于充分发挥电池的作用。我们采用高度集成的电源管理设备,并尽可能减少外部组件数和封装尺寸,这有助于高效利用有限的板级空间,以便集成更多功能,并减小

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top