一种基于TCRA的低轨星座通信系统的强占预留信道策略
负指数分布的无记忆特性,决定了对于呼叫持续时长遵循此分布的正在通话用户,它的呼叫结束时间不受其已经历通话时长的影响。设已经历通话时长T1的正在通话用户在T1+Δτ时刻以后呼叫结束的概率为Po,则:
由于通话用户间的呼叫持续时长相互独立,则n个活动用户继续保持通话时间大于Δτ的概率Po(n)为:
由此可以认为:在所有信道都被用户使用或是预留的信道容量为C的小区中,T0时刻一个新呼叫到达,如果系统可以预测到接受此次新呼叫在T0+Δτ时刻存在切换失败的可能,那么采取强占预留策略允许此新呼叫接入,将导致系统切换失败的概率为Po(C+1)。
参考文献[6]推导得到,在由方形小区组成的一维移动性模型中,如果新呼叫阻塞概率Pn和切换失败概率Ph都为0,则系统中每次呼叫需要经历的平均切换次数nk为:
其中,Vsat为低轨卫星的星下点移动速度,R为方形小区长度。
服务等级(GoS)是反映QoS的一个重要指标,它由新呼叫阻塞概率和切换失败概率决定[6]:
其中,k>1,是新呼叫与切换呼叫GoS之间的平衡因子,在一些文献中通常取10。服务等级越低,通信质量越好,说明信道分配策略越好;切换失败概率对于服务等级的影响是新呼叫阻塞概率对其影响的k倍。
为保证改进的策略具有更好的QoS,要求改进策略的GoS更低,结合GoS定义可得:
其中,Pn2和Ph2分别为策略改进后系统产生的新呼叫阻塞概率和切换失败概率;Pn1和Ph1分别为原策略产生的新呼叫阻塞概率和切换失败概率。为更清楚地表述算法,本文将相应的呼叫统计数量引入计算,(6)式即可表示为:
其中,Nnbi,Nni,Nhbi,Nhi分别为采取原策略(i=1)和采取改进策略(i=2)时一段时间内系统中产生的新呼叫阻塞数量、新呼叫数量、切换失败数量、切换数量。可令Nn1和Nn2相等,记为:
本文采用的移动性模型满足参考文献[6]提出的假设要求, 近似为0,根据参考文献[6],有:
由式(7)、(8)、(9),得到:
不等式左侧分母表示新策略减少的新呼叫阻塞数量,即增加的新呼叫接入数量,分子表示新策略增加的切换失败的数量。又有采用强占信道策略允许新呼叫接入所导致的切换失败概率为Po(C+1),则有:
这里称不等式(12)右侧的时间门限为强占信道时间门限,用ΔT表示。只有满足Δτ>ΔT,才能保证改进的策略具有更好的服务质量。
2.2 算法描述
在执行基于TCRA的强占预留信道的信道分配策略时,首先根据实际低轨星座卫星的移动性参数、小区信道数量以及业务模型的相关参数,按(12)式计算强占信道时间门限ΔT。在一个呼叫的生命周期中主要执行的算法如下:
新呼叫到达阶段:当T0时刻新呼叫发出信道请求时,系统首先执行TCRA-1策略,如果满足此策略,系统分配给新呼叫一个合适的信道并实施预留,如果新用户驻留本小区时间间隔内所有信道都有被预留的记录,则搜索最迟被预留的信道,假设其预留开始时间为T1,则Δτ=T1-T0。如果Δτ>ΔT且可在下一小区实施预留,则接受新呼叫请求;否则,新呼叫失败;如果系统没有空闲信道,也阻止新呼叫接入。
呼叫切换阶段:切换后用户使用事先系统为其预留的信道;系统预测未来切换的时刻,并且在未来小区中相应的时间间隔内预留一个信道。如果以上条件系统无法满足,则此呼叫切换失败,解除为其预留的信道。无论切换是否成功,此呼叫都释放目前小区占用信道。
呼叫终止阶段:当用户结束本次呼叫时,释放目前小区占用的信道,解除下一小区相应信道的预留请求。
3 仿真结果与分析
3.1仿真模型和基础假设
本文中的仿真建立在7小区网络模型之上进行,如图1。在7小区模型中用户终端按照从小区A到小区G的顺序切换, G中用户的目的切换小区是A。7小区模型可以为仿真提供足够的精度,且复杂度要低于采用98小区的模型[5]。
仿真中假设:模型中新呼叫到达时间服从泊松分布,小区中的新呼叫用户出现位置服从均匀分布;用户通话持续时间服从负指数分布,呼叫平均持续时长为180s;小区长度为250km;卫星星下点速度为27 000km/h;采用固定信道分配,每个小区平均分配20条信道;TCRA-1中的错误差量σt取0;GoS平衡因子k取10;仿真时间为24h。
3.2 仿真结果
本文在固定信道分配的基础上,分别采用了TCRA、基于TCRA的强占预留信道策略、预留信道数量为2和3的固定信道预留策略对通信过程进行仿真。对应不同的业务量,对几种策略的切换失败概率、新呼叫阻塞概率和GoS三项指标进行比较, 如图4、图5、图6所示对比几种策略,TCRA不产生切换失败,这是此算法的优势,但其产生的新呼叫阻塞率较高;固定预留2个信道策略的切换失败率最高;固定预留3个信道策略的新呼叫阻塞率最高;提出的新策略产生一定的切换失败,但即使是在业务量为12爱尔兰时切换失败率也仅有7.7×10-4,在新呼叫阻塞概率方面,明显优于固定预留3个信道的预留策略和TCRA策略,对应不同的业务量,策略几乎都能比TCRA降低20%的新呼叫阻塞概率。几种策略中,本文提出的新策略具有最低的GoS。综上,与TCRA和两种固定信道预留策略相比,新策略都具有更好的QoS,且能较好地利用系统的信道资源。
预留 信道 策略 强占 系统 TCRA 星座 通信 基于 低轨星座通信系统 信道分配 切换管理 基于时间信道预留算法 相关文章:
- 基于McWiLL的基站信道资源的分配(01-30)
- 测量WiMAX信道功率的有效方案(06-30)
- 基于3G的MIMO技术(06-28)
- 电视频段 无线宽带“拓荒”(12-12)
- McWiLL宽带基站的信道管理(12-12)
- LTE系统时延及降低空口时延的4种方案(06-28)