超高频段RFID标签的数字电路设计
有效性和完整性,CRC校验可以保护读写器发出的RjT (reader to tag)命令和标签反向散射的TjR (tag to reader)序列。从数学角度来看,CRC校验是用将被处理的数据字节当作一个二进制多项式A ( )的系数,该系数除以发送方和接收方预先约定好的生成多项式g ( )后,将求得的余数P ( )作为CRC校验码。CRC的计算包括了要计算其CRC值的数据字节以及所有前面的数据字节的CRC值。当一个数据块被传输时,数据发送方计算此数据块的CRC校验码,并将此校验码附在数据块后一起传输。数据接收方计算所有接收数据的CRC值,其结果总是零,否则在传输过程中一定出现了传输错误。用零校验可以很容易地分析数据的完整性,避免代价很高的校验和比较过程。协议中采用线性反馈移位寄存器来实现CRC校验,CRC.5校验和CRC.16校验的电路示意图如图4所示。
图4 CRC-5和CRC-16电路
4.4 射频标签中的状态机
RFID标签所有的操作都基于由一系列逻辑控制的状态转换进行的,此为标签数字电路的核心部分。本设计采用有限状态机来实现此模块,这里用到了3类基本操作和7种典型的状态。如图5所示,当收到不同命令时,标签将会在7种状态间进行转换。选择(select)命令和盘存(inventory)命令用于从标签群中识别出特定的一个,标签所处的相应状态为ready,arbitrate,reply,acknowledged;一旦标签被识别,读写器即可发出访问(access)命令,读取标签的信息或将信息发送给标签,标签所处的相应状态为open,secured,killed。
图5 读写器对标签操作及标签的状态
识别多个标签时采用随机分槽防碰撞算法(slotted random anti.collision algorithm)解决冲突问题。读写器向读写范围内的每个标签发送包含参数Q (取值0 15)的Query命令,控制标签往各自的分槽计数器内载入一个由Q值决定的随机数(取值范围0~2Q.1),随机数的产生主要基于线性移位反馈寄存器 。读写器再发出其他inventory命令改变随机数的值,只有当随机数的值为0时,标签才会应答。若多个标签的计数器值同时为0时,这些标签同时应答,从而造成冲突。读写器检测到冲突后,发出inventory命令让冲突标签的随机数值从0000h(十六进制数)变到7FFFh,再通过设置新的Q参数来随机散列分槽计数器值,使得发生冲突的多个标签逐一被识别,保留一个处于活动状态的标签与读写器建立无碰撞通信,这样就有效地解决了冲突问题。虽然此种方法的判别线性度比二进制数搜索法低,但读取速度高,演算机制完整,可防范多种信号碰撞的可能性,大幅降低信号碰撞的几率。
4.5 编码模块
标签反向散射给读写器的数据采用FM0编码,图6给出了FM0编码的格式。
图6 FM0编码格式
FM0编码的数据前应以前同步码开始,选择哪种前同步码由读写器所发命令中的TRext参数决定;FM0编码在每个数据边界处倒转相位,并在数据0中间倒转相位。FM0编码具有记忆功能,一序列的信号中,后一位电平必须承接上一位末尾电平,所以需要一个寄存器存放上一位末尾处的电平信号,由此来判断下一信号的起始电平。根据读器所发命令确定标签返回数据的链路频率(LF:link frequency), 由内部时钟计数产生所需频率,以此作为标签返回数据的发送频率。为降低功耗,可以将全局时钟分频,降低时钟频率。为了准确实现编码的功能,需要在充分理解标准的基础上,严格定义该模块与状态机之间的接口时序。编码模块只有与状态机模块在时序上密切配合,双方才能正确地发送和接收信号。实现过程为:当状态机发送的使能信号有效时,编码模块进入编码状态,同时,状态机送出数据信号;编码模块被触发启动后,首先按照协议要求产生前同步码,再把要输出的数据依次编码,产生1 bit中高低各半的0信号或统一电平的1信号,串行送出;当状态机发送最后一位数据的同时,通知编码模块,状态机的数据已经发送完毕。
4.6 存储器及存储控制逻辑
RFID标签的数据信息都存储在存储器中,一般采用EEPROM,用于存储EPC代码以及password等标签的标识性信息。存储器与状态机的接口 5 J为:Di是存储器输入数据信号;Do是存储器输出数据信号;Addr是存储器输入地址信号;oen是存储器输出使能信号,高电平有效;cen是存储器芯片使能信号,高电平有效;we是存储器读写控制信号,we=1时写有效;we=0时读有效。
5 仿真结果及版图
本文采用VHDL完成了UHF RFID标签数字电路的RTL代码设计,同时对标签与读写器通讯过程进行全面的模拟和仿真,并基于0.18μm CMOS工艺标准单元库,用EDA相关工具对该电路进行了前端综合和后端物理实现。仿真结果如图7所示,
- 无线基站或变电站网络数字监控系统(03-20)
- PF-503(800M OFDM)数字移动微波在马拉松直播中的应用(10-14)
- 数字电视系统的关键技术及标准概述(02-15)
- 遥控器对射频的需求(04-27)
- 3G无线监控与WIFI式无线监控(07-01)
- 数字无线电前端策略为小型蜂窝基站带来改变(09-24)