基于ZigBee的光伏照明控制系统设计
CC2591的HGM引脚为增益控制,当它为高电平时处于高增益模式;EN和PAEN为高电平时CC2591工作在正常模式,为低电平时进入低功耗模式。R1、R2为偏置电阻,为晶体振荡器提供合适的工作电流。天线采用50 Ω鞭状天线。由于ZigBee模块工作在2.4 GHz频段,对PCB设计要求很高,PCB板材、元件封装、布局和布线必须参照TI公司的参考设计。特别是天线阻抗匹配部分,在布线中应直接采用TI公司提供的GERBER文件,复制其PCB布线方式才能保证CC2591的高性能和稳定性。另外,PCB的电源退耦和地线处理也非常重要,退耦电容应尽可能接近电源引脚,PCB空余的部分需进行覆铜接地处理,在顶层和底层覆铜之间按照一定的间隔用过孔相连。
2.2 协调器和路由器硬件设计
由于协调器和路由器都需要通过RS485总线和其他设备进行远距离通信,因此需要设计RS485通信模块与ZigBee通信模块相连。通信模块采用MAX485和光耦实现,MAX485通过CC2430的PO.5脚完成RS485收发控制。CC2430电源采用LTlll7-3.3等芯片供电。在ZigBee协议中,网络协调器负责建立网络和实现路由控制等功能,因此必须保持工作状态,保证数据采集的可靠性和稳定性。本系统中,网络协调器和路由器正常工作时采用外部交流电源供电。当外部交流电源掉电时,通过微处理器监控芯片ADM690实现电源切换,利用电池组对其供电,以保证网络的稳定工作。ADM690具有低功耗、低导通电阻和大电流输出等特性,非常适合实现微处理器的电池后备功能。该电路设计如图3所示。其中,R1为充电限流电阻,在外部电源正常时可以对电池涓流充电。
2.3 终端节点硬件设计
终端节点的功能是接收协调器发送的指令控制路灯开关。其电源是在监控计算机发送命令到光伏充电机对路灯供电线缆供电之后提供,因此硬件部分不需要电池后备功能、光伏照明系统中供电电压为直流220 V,终端节点电源部分采用DC-DC开关电源产生5 V直流供电,路灯开关控制则通过CC2430的GPIO和三极管控制继电器实现。由于CC2430只有引脚P1.O和P1.1具有20 mA的驱动能力,而其他引脚最大驱动电流为4 mA,所以使用SN74HC04D作为输出缓冲。其原理图如图4所示。
3 系统软件设计
系统软件主要包括ZigBee协调器节点程序、路由器节点程序、终端节点程序和监控计算机程序。监控计算机程序实现对光伏照明系统的监控和数据处理,LED路灯通断控制,以及与之相连的另外一套光伏发电系统和环境监测系统的数据采集和监控。监控计算机与协调器节点通信通过二进制编码的方式进行通信,每隔5 s发送1次采集命令。其数据包格式如下:
其中,数据包包头(HEADER)占2字节,可设置为0x81、Ox82,用于区分是计算机数据包输出还是数据包输入;数据长度(LENGTH)为1字节;命令类型包括充电机数据采集、路灯开关状态采集、环境参数采集等;数据字节数由LENGTH指定;数据CRC校验占1字节。
ZigBee节点程序是在TI公司提供的ZStack-1.4.3-1.2.1协议栈的基础上编写的,可以实现网络建立、节点加入和退出、数据传输等功能。该协议栈将应用层和堆栈层进行了分离,提供了类似于操作系统的运行机制(OSAL)(主要包括任务的注册、初始化、启动,任务间的消息交换,任务同步,中断处理,以及时间管理和内存分配等),具有很好的可移植性。
节点程序流程如图5所示。当对硬件和协议栈各层初始化后,采用有限状态机以事件轮询方式对事件进行处理。如果同时有几个事件发生,则判断事件优先级后逐次处理。该协议栈提供了丰富的API函数供用户调用,这种软件构架可方便地构造用户应用程序。由于对终端节点的供电是由光伏充电机根据监控计算机的命令来控制,因此在正常情况下终端节点每天都会加人和退出网络。
ZigBee节点之间的通信有两种寻址方式,分别通过固定的64位IEEE地址和16位网络地址来寻找网络设备。当节点加入ZigBee网络时,它可以通过协调器随机获取唯一的l6位网络地址。光伏照明系统要求能按照路灯的编号任意控制其点亮或者关闭,而要与特定节点通信必须采用IEEE地址,故利用TI公司提供的SmartRF软件对ZigBee节点的64位IEEE地址进行人工分配。协调器向终端节点传送数据使用AF_DataReqt-lest()函数实现,该函数需要节点的网络地址作为参数,通过IEEE地址获取16位网络地址的功能由NLME_GetShortAddr()函数实现。程序设计中,在应用层添加用户所需要的任务,对接收到的事件进行处理。节点在启动时需完成以下工作:初始化CC2430和协议栈;帮助协调器节点建立ZigBee网络,设置网络PAN ID,等待其他节点加入网络;对监控计算机传送的命令进
- 基于Zigbee技术家用无线网络的构架(12-14)
- 基于精简协议栈的ZigBee网络节点研究(07-17)
- ZigBee无线传感器网络的研究与实验(02-08)
- 解析ZigBee堆栈架构(03-26)
- 组建SMAC协议构架的ZigBee星形网络(06-11)
- ZigBee基本技术问答(12-07)