微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 通信系统过电压产生的原因与防护

通信系统过电压产生的原因与防护

时间:02-28 来源:互联网 点击:

来越广。例如,将氧化锌(与其它添加剂一起)在一定条件下烧结,电阻就会受电压的强烈影响。这个特性也是其名字(电压变阻器)的由来。电压变阻器(VDR)也叫变阻器。电流(I)随着电压(U)的上升而急剧上升。正式的关系由公式I=aKU表达,其中K是与几何形状有关的元件常数,a是一个非线性指数。

变阻器的典型特性是当处于工作电压时,压敏电阻值极大;在雷电波侵入作用下,它的电阻值甚小,向大地泄放电流。由于电流过大,因此变阻器内部发热量很大。变阻器在远高于其额定电压的情形下运行一般只可能保持很短的一段时间。

S齐纳二极管:双向齐纳二极管具有与变阻器类似的导电特性,对正向和反向电流在电流/电压特性上有一个拐点。非线性指数比变阻器要高,使二极管的“开通”更为急剧,因而可以有效地规定限制电压。

其结构是两个二极管反向串联,可获得对称性。运作于“反向”方式下的二极管PN结阻挡层一般可阻止电流经过。当电场强度超过一定水平时,电子就会脱离其晶格束缚(即齐纳效应),而已经大大加速的带电粒子会从晶格中推出更多的粒子(即雪崩效应)。结果就是阻挡层的“突破”并产生电流。这个“突破”电压称为齐纳电压Uz,电压稳定效应则是由于当电压大于Uz时,很大的电流变化只产生很小的电压变化。齐纳二极管的稳压效应比变阻器要好。

齐纳二极管的能量吸收比变阻器小,因为其阻挡层比变阻器层要薄得多。因此齐纳二极管的负荷承受能力要低得多,由此所出现的过热情况可以部分地用压制成形的金属电极补偿,电极可以散掉热量,但也增加了体积。抑制二极管是一种特别的保护二极管,具有很短的反应时间及很高的尖峰电流负荷承受能力。

S闸流二极管:由于放电电流中伴有很大的电压降,变阻器和二极管必须吸收大量的能量。在保护设备起作用之后,容许把故障电压降低到远低于保护电平的值,甚至低于运行电压,以便减少能量的转换。这种特性类似于放电器的“火花放电”。

在半导体元件中,上述特性可以在闸流二极管中观察到。闸流二极管开始会阻塞,直到达到放电电压时,电压下降至几伏并产生放电电流。当电流下降到最小值时,闸流二极管会重新阻塞,并恢复其原来的断路状态。与GDT一样,在这种情况下,必须满足干扰清除后会安全停止放电的要求。闸流二极管有单向和双向元件。其特点是高尖峰电流和短反应时间,因而特别适用于较高的保护电平(几十伏到几百伏)。

设计相同的齐纳和闸流二极管其限制电压与容许放电电流的关系取决于半导体。这些二极管的结构和尺寸决定了能吸收的功率大小。随着限制电压的提高,齐纳二极管的容许电流呈双曲线下降,然而闸流二极管的容许电流几乎是恒定的。其原因是,在闸流二极管放电以后,电压降几乎与电流大小无关。由此可见,在结构体积相同的情况下,齐纳二极管较适用于低的限制电压,而闸流二极管则适用于高的限制电压,其分界点是50V左右。

S热敏电阻:以上所讨论的元件其功能都是基于纯电压效应。热敏电阻在温度升高时电阻会减少。与任何电阻一样,电流所产生的电能损耗会使热敏电阻升温。升温使电阻下降,电流升高。结果就形成了与稳压元件相似的电流/电压关系。但是只有在反应时间之后,这种效应才会发生。所以保护作用受到元件热惯性的影响。

②限流元件的电流限制特性有两个功能:第一、当超过电流限值时,无条件地切断电路或者加以限制;第二、去耦与/或抑制短暂电压/电流尖峰(大部分情况下与电压限制元件一起使用)。

S电阻:电阻是去耦的最简单方式,一般没有断路的功能。电压尖峰所产生的短暂电流尖峰会在电阻上产生相应的压降,因而减少了干扰的影响。去耦元件常常与电压限制元件一起用于电路中而作为串联的电阻器。

在应用中最大允许串联电阻常常受到很大的限制(限制为几欧)。一方面,要求在工作电流下的电压降低;另一方面,要求在工作电流下保护电阻器不会过载,由于去耦效应与电阻值成比例,所以使用电感器应该有所帮助。

S保险丝:保险丝是传统的电流限制元件,是由导电熔丝构成,置于线路中受保护元件的前边。熔丝具有一定的电阻,熔丝的温度在一定电流下会上升(温度取决于热容量、辐射和散热),直到熔丝熔化,从而实现保护。

S电感:电感(线圈)可对短暂尖峰具有很高的去耦效应,而同时保持很低的直流电阻。但也有一个缺点:其阻抗随频率而变,因而严重损害保护元件的传输性能。

SPTC(正温度系数)电阻器:通常是陶瓷元件,在正常温度下呈现欧姆特性,因此像电阻器

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top