微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 在RS485网络中使用隔离带来的性能好处

在RS485网络中使用隔离带来的性能好处

时间:01-06 来源:互联网 点击:

图3显示出了很明显的差错。有两种因素导致数据丢失,这两种因素都与RS485接收器的有限共模抑制能力有关。首先,共模信号的高频分量(这里大约为1.2MHz)超过了大多数RS485接收器共模抑制的有效带宽;其次,提供给接收器的共模信号的幅度远超过允许的-7V至+12V范围。在这种情况下,在100英尺导线末端的信号幅度将达到±20V的峰值,尽管在近端引入激励的电压峰值仅为±7V。这种幅度峰值在网络配线的谐振频率上被最大限度地提高了。请注意,这不涉及总线的差分特性,就像是一条传输线,但这是与共模阻抗有关的一种特性。谐振频率是电缆长度、电缆配置(例如是绕成线圈的,还是直的)和所连接节点复阻抗的函数。有趣的是,由于频率分量和幅度峰值,一个±7V的共模信号就能够破坏RS485信号传输。

用LTM2881隔离式RS485收发器(图2c)取代该RS485收发器,可以解决数据损坏问题,如图4所示。在这种配置中,加到接收器输入端的共模信号几乎全部落在隔离势垒上。与接收器隔离的地随着接收器输入的共模电压变化,简单的附着其上。结果,接收器不把这看作是一种共模变化,并继续可靠地检测差分数据。

请注意,在图4中,共模频率已经升高到2MHz,这导致在电缆末端进入接收器(蓝色波形)的信号幅度显著提高到40VPP。这个共模电压幅度远远超出RS485标准中规定的性能规格,会给大多数非隔离式RS485收发器带来考验。通过改善配线,LTM2881隔离式收发器甚至可在更高的共模变化频率上继续工作,下面探讨这个问题。

进一步的配线改进

之前的讨论集中在具无屏蔽双绞线总线配线的隔离式收发器和非隔离式收发器之间的差别。更好的配线选择包括,采用屏蔽导线和一种将所有隔离的地节点连到一起的公共导线。以下讨论采用这些方法的两种配线配置。

图2b显示用诸如Belden 9841电缆等屏蔽双绞线连接的非隔离网络。屏蔽层应该只在一个点连接,以避免产生地环路。将屏蔽层连接到接收器地,可为提高系统性能提供最佳分流。在多节点、非隔离网络中,主节点一般是屏蔽层连接点。屏蔽所起的作用是将耦合能量分流至地而不是信号线。对于缩小网络不同节点上的驱动器和接收器之间的地电位差来说,屏蔽并不起任何作用。如下面讨论的那样,这个限制在隔离式网络中被消除了。

图2d说明了用于隔离式收发器的最佳配线选择。采用一根普通导线将每个节点上的所有隔离地连接在一起。在某个点上将该公共接头连接至非隔离地,以确立另外的未接地网络的标称电压基准电平。这可防止总线浮动至超出隔离额定值的过高电压。

这种配置可使RS485接收器发挥最佳性能,因为接收器的隔离地电位跟随输入信号的共模,并被吸收到隔离势垒上。既然接收器地随着信号变化,那么接收器就没有抑制共模电压瞬态的负担了。跨隔离势垒传送数字编码数据的电路承担瞬态和共模抑制这个任务。在LTM2881中,数字隔离使用差分电感信号和编码来传送数据。LTM2881可以抑制高于30kV/us的瞬态转换率,例如,势垒电压仅在27ns内就有800V变化,而不会丢失任何数据。

图2d还显示了一个单独的屏蔽层,该屏蔽层在一个点连接到大地的地电位,以分流耦合的噪声。不过,有些系统不会既选择屏蔽层又选择单独的基准配线。在这种情况下,最佳选择是将屏蔽层连接到每个隔离收发器的公共终端,然后再从一个点连接到大地的地电位。如果RF抗扰力仍然令人担忧,那么利用从每个接收器公共端到地的高频高压电容器,就能够从收发器分走能量。

需要隔离的网络

显然,隔离可以改善数据通信的可靠性。但是一个从隔离受益的正常运行的网络有哪些特点?哪些证据可以证明给一个网络产品增加隔离是正确的呢?

系统可能获益的第一个迹象是在经常进行信息重发的时候。较高级的协议可以处理随机误差(由一个校验和进行检测),并偶尔重新发送某个信息。较高级的协议也可能随机丢失信息、超时和重新初始化。当然也可以“重启”,但是会降低系统性能。信息重发和重新启动经常发生时,系统响应就会变慢。节点将不会以预期的速度更新,编号靠后的地址或线路末端的节点可能很少更新,因为重新启动经常将主控信号发回到序列中的第一个节点。在有现实环境干扰的现场,系统性能可能比在实验室中进行系统测试和验证时观察到的要差。协议差错检验和恢复应该只处理极少发生的事件。在正常工作情况下能看到通信差错时,就要采用隔离。

其他有可能需要隔离的迹象是出现现场故障和早期产品退货。退回的产品遭损坏或报告有通信故障吗?潜在的现场故障和安装时损坏的组件都要考虑。正确

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top