一种基于风光互补发电的物联网远程监控系统

2.2 I/O控制板的设计
2.2.1 I/O控制板的硬件设计
现场开关信号通过光耦送至I/O控制板,当风机或光伏组件的电压或者电流过高的时候,可能会损害系统或者负载,I/O控制板将通过控制继电器来保护接入的负载。同时,I/O控制板可以将当前继电器的状态发送到控制中心并可以接收远方控制中心的指令,开关继电器,达到远端控制现场的目的。
I/O控制板其单片机、串口通信模块、电源稳压模块、射频模块及时钟电路与数据采集板的设计相同,不再赘述。I/O控制板与数据采集板不同之处为继电器电路和光耦隔离输入电路。继电器电路选用的是欧姆龙公司的产品OMRON_G5Q-12VDC。输入电路采用光耦隔离,选用最为常用的光耦隔离芯片TIL113。
2.2.2 I/O控制板的软件设计
根据I/O控制板的设计目的,I/O控制板要实时监控输入信号,当发生异常时,要主动切断与继电器相连的负载,以保证整个系统的安全。同时,还可以接收监测远端控制中心通过无线射频模块发送的控制信息,控制现场继电器的通断和将自己现在的状况回馈给监控中心。按照设计要求,控制板的程序流程图如图6所示。

2.3 数据集中器板的设计与GPRS板
2.3.1 数据集中器板的设计目的
数据集中器要能够依次接收数据采集板采集得到的信息,并将所有的信息按照通信协议打包并通过串口将信息发送到GPRS模块,通过GPRS将信息发送到服务器。同时,集中器要能够接收远端控制中心的命令,并作出相应的动作,向控制器发送命令以控制现场情况。
2.3.2 数据集中器板的硬件设计
数据集中器板的电源稳压电路、时钟电路、射频模块及串口通信模块与数据采集板电路相同,不再赘述。
由于需要处理的信息更多,所以数据集中器板选用ATmega162作为核心芯片。ATmega162是高性能、低功耗,RISC架构的8位AVR微处理器。
2.3.3 GPRS模块
GPRS模块将数据集中器板集中打包的数据,通过中国移动网络发送到服务器中,服务器软件将信息提取存储至数据库中。GPRS板选用EP220P模块。
数据集中器板与GPRS板通过RS 232串口连接,由于EP220P模块采用全透明的数据传输,只需要按照数据手册设置好GPRS模块的串口波特率,串口数据位,串口校验位,短信中心号码,ID号,本地端口号,服务器IP地址,服务器端口号和通信协议TCP Client模式。
2.3.4 数据集中器的软件设计
数据集中器板采取轮循的方式,依次读取数据采集板所采集的信息,当信息采集完毕之后,将所有信息打包,把信息送到GPRS模块之中,并随时检验远端收到的命令,校验正确之后,按照命令将命令发送到相应的下位机板中。其系统流程图如图7所示。

3 服务器配置与客户端软件
3.1 服务器配置
数据送至服务器后,通过“GPRS服务器”程序管理设备连接、客户连接、日志管理,并将数据提取,存储更新至数据库GPRSServer各表格中。
3.2 客户端软件
客户端软件由两部分构成,第一部分为建立数据源,由于LabVIEW数据库工具只能操作而不能创建数据库,所以必须借助第三方数据库管理系统,选用Microsoft公司的Access软件来创建数据库,建立一个名为GPRSDB.mdb的数据库文件,利用编写的“数据库后台连接”软件,实时更新Access数据表格GPRSDB;第二部分为“新能源物联网监控系统”,由LabVIEW编译,具有良好的界面效果,首先利用DBOperati ton子VI连接数据库,后可利用SQL Execute子VI执行SQL查询语句,从GPRSDB表格中查询数值,如图8所示。实时更新风机电压、光伏电池电压及电流、各数据采集板及集中器板连接状态,并根据风机电压、光伏电池电压及电流折算显示出风速及光强的大小,且在客户端软件中加载控件,调用视频监控界面,监测实际的运行状态,界面如图9所示。

视频监控系统如图10所示,采用全IP视频监控系统。系统分为前端部分、远程传输部分和中心控制部分。前端部分由摄像头、云台和视频处理设备3部分组成;远程传输系统由室外无线网桥、路由器、ADSL组成,通过局域网、Internet网络完成视频数据传输;中心控制部分负责系统的管理和控制工作,对信息进行存储、管理和分析。

该系统优势是摄像机内置Web服务器,并直接提供以太网端口。摄像机生成JPEG或MPEG4数据文件,可供任何经授权客户机从网络中任何位置访问、监视、记录。
网络摄像机通过经济高效有线或无线以太网简单连接到网络,能够利用现有局域网基础设施。使用5类网络线缆或无线网络方式传输摄像机输出图像以及水平、垂直、变倍(PTZ)控制命令。
同时任何经授权客户机都可直接访问任意摄像机,也可通过中央服务器访问监控图像。
5 结语
本文针对远程运行的风光互补发电系统,提出基于视频监控、射频通信、GPRS传输、数据库应用及图形化LabVIEW编程的物联网监控系统。该风光互补发电系统及物联网监控系统已成功应用于无锡洛社新能源试验项目中,从运行的情况来看,基本实现了风光互补发电的效用,并提供电能应用于路灯照明,物联网监控系统传输稳定,远程数据及视频监控正常。但存在的问题是远程数据监控有滞后,主要影响因素为GPRS数据传输的速度及无线信号在传输过程中受遮蔽等。鉴于通信成本的下降,可考虑用3G数据传输替代GPRS数据传输,提高数据传输速率,无线射频模块采用传输更稳定,穿透能力更强的模块,增强整个系统的可靠性。实际证明,该系统具有良好的技术价值和市场价值,可更好的推广于生产生活中,为人们带来便利。
- 小型基站能否缓解物联网频谱资源短缺压力?(10-22)
- 5G技术为下一代物联网铺路(01-20)
- 解析全球移动通信协会的蜂窝物联网频谱白皮书(10-06)
- 中兴通讯在终端领域成立物联网子公司 (04-17)
- RFID助推智慧医疗建设 (03-27)
- 物联网技术在畜产品中的应用(04-28)
