低功耗无线传感器网络射频前端系统架构研究
为一种OOK收发机结构,发射端采用直接变换方式,晶振产生的载波与数字基带信号信号进行混频,上变频至射频,经功率放大器由天 线发射出去;接收端采用非相干接收解调,省去了混频器降低了系统总的功耗,由天线接收的信号经SAW滤波器,射频低噪声放大器后,由包络检波器进行解调, 经基带放大器,模数转换器恢复出原始信息。
3、能量模型
为了减小收发机的总能耗,就需要知道收发机中每个关键信号处理模块的精确的能量模型。对WiFi双工射频前端进行了建模,并给出了主要器件的功耗 情况。通常除了PA之外的模拟器件的主要功率参数在通信中很难调整,同时尽管数/模转换器和模/数转换器是功耗与功率峰均比(Peak-to- Average Ratio, PAR)和调制级数有关的器件,但它们的功耗变化很小,所以我们这里假定它们的功耗为常数,PA的功耗在收发机中占主要部分,我们主要考虑 PA的功耗。
目前在收发机中应用的功率放大器主要有两种:线性的PA和非线性的PA,它们分别用在线性调制系统和非线性调制系统中。一般来 说,在相同数据速率的情况下,线性PA的功率效率比非线性的低,因此消耗的功率要比非线性PA的高;另一方面,线性调制系统的带宽效率比非线性的要高,数 据率也可以很高,并且线性度高的PA可以保证通信质量和抑制频谱再生。由文献[5]知PA的功耗不但与效率有关,而且与通信参数有关,比如传输的距离、调 制级数、数据率、信号峰均比和误码率等。
典型的线性放大器是A类功率放大器,有很好的线性,但是由于控制电流源采用有源器件使其具有较大的直流功率消耗,所以效率较低,通常小于50%。一种高效的 非线性功率放大器E类功率放大器,广泛的应用在GSM等系统中,理论上当采用开关模式是E类的效率可以达到100%。建立了精确的MQAM调制 系统A类放大器的功率模型,建立了PSK调制系统的A类功率放大器模型和MSK调制系统的非线性E类功率放大器模型。但是没有考虑由成型 滤波器引起的PARroll-off对放大器功耗的模型,下面我们建立完整的PSK调制和OOK调制系统的A类功率放大器功耗模型。
4、结果分析
从第三部分可知每比特的能量不仅和放大器的效率有关,还和其它通信参数有关,比如调制方式,调制级数,数据速率,传输距离,误比特率和由成型滤波引起的峰均 比等(MQAM调制的峰均比为由成型滤波和调制级数b引起的峰均比的和)。假定PE为常数,且和射频前端架构和调制方式有关。我们从文献和 Freescale,TI的产品中得到射频前端的各模拟元件常见的功耗作为我们的仿真参数,计算出不同架构和调制方式的PE,具体仿真参数见表1。
图5给出了在不同架构和调制方式下每比特消耗的能量与传输距离的关系。从图中可以看出当传输距离较小时,使用线性功率放大器的PSK,16QAM,OOK调 制方式消耗的能量较小,而使用非线性功率放大器的MSK调制方式具有较大的能量消耗;而且调制级数越大能耗越小。从公式(10)-(17)可以看出,当距 离较小时PA功耗PA P 相对于其它模块的总功耗PE来说很小,因此PE在总能耗Ebit中占主要部分,并且PE与调制级数b成反比。当距离较大时具有非线性功率放大器的MSK调 制方式具有较小的能耗,并且BPSK,QPSK调制方式相对于其它使用线性功率放大器的调制方式具有较小的能耗。从公式(10)-(17)可以看出当传输 距离较大时,PA功耗PPA占主要部分,非线性功率放大器具有较高的效率,所以使用非线性功率放大器的MSK调制方式具有较小的能耗。
图5 显示当传输距离小于10m时,OOK、QPSK和16QAM调制具有较小的能耗,考虑计算和实现的复杂度,OOK和QPSK调制更适合低功耗WSN系统。 传输距离在10m到25m选择QPSK调制方式,在传输距离大于25m时选择MSK调制方式。对给定的传输距离,我们可以选择合适的架构和调制方式,使 WSN系统射频前端的能耗最小。
每比特的能耗还与数据的传输速率有关,对不同的应用要求不同的传输速率。图6给出了在不同的架构和调制方式 下每比特的能耗与传输速率的关系,传输距离选择10m。从图中可以看出当传输速率小于一定速率(200kbps)时,OOK调制方式具有较小的能 耗,BPSK、QPSK和MSK调制方式次之;当传输速率大于200kbps时,MSK调制方式具有最小的能耗,OOK, BPSK、QPSK调制方式次之。我们知道对于固定的调制级数,传码率Rs与数据速率Rb成正比,Rs等于带宽B。对高斯白噪声来说,噪声功率N与带宽B 成正比,由公式(10)-(13)知,PA的功耗与噪声功率N有关。因此当Rb较小时,N较小,PA的功耗相对于架构中其它模块的功耗PE较小,PE在总
- 深入浅出Zigbee(11-25)
- 用于超低功耗RF远程控制的参考设计(11-23)
- 基于单片机低功耗主动式RFID标签设计(03-10)
- 2.4 GHz射频的多功能鼠标设计(05-28)
- 低功耗电源的电感选择(06-07)
- 嵌入式低功耗射频/红外转换控制器的开发(06-27)