微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 谐振控制器和PFC控制器介绍

谐振控制器和PFC控制器介绍

时间:11-18 来源:互联网 点击:
2.3.4 缩短高边第一个脉冲时间

启动时按正常开通时间打开高边MOSFET,第一个电流脉冲的幅度会很高,该峰值电流会造成干扰。TEA1713和TEA1613控制器把高边MOSFET的第一个导通时间缩短为只有正常导通时间的一半,因此原边电流初始幅度较低,可以快速达到稳定的工作状态(图4)。

a. 通常情况下第一次高边MOSFET导通时间。

b. 缩短高边导通时间后有限的峰值电流。


图4:缩短高边导通时间后的效果


3. 可靠性和安全性

提升开关式电源的可靠性与耐用性是减少返修和控制成本的关键因素。为此,恩智浦在TEA1613和TEA1713产品中增加了多重保护功能,为客户带来了真正完美的电源解决方案。

3.1容性模式保护

比较独特的保护功能是恩智浦正在申请专利的逐周期容性模式保护,它能够有效避免任何因容性模式对功率MOSFET可能造成的损害。有了它设计人员无须考虑与容性模式开关相关的MOSFET的反向恢复问题。因此,设计人员选用MOSFET器件时可以进行成本优化,不会影响整个电源系统的性能和可靠性。

谐振转换器通常工作在感性模式下,其开关频率高于谐振频率,利用功率MOSFET器件的零电压切换(ZVS)功能实现电源高效运行。对于输出短路电流、高脉动负载或市电降压等特殊情况,谐振回路的谐振频率短时间会高于工作频率,这将使得谐振回路变成容性阻抗。在容性模式中,MOSFET关闭后电流会持续流经体二极管,半桥节点(HB)不会出现电压变化。此时打开另一个MOSFET会非常危险,因为带体二极管的MOSFET反向恢复时产生的峰值电流可以瞬时烧毁器件。TEA1713和TEA1613对于危险的容性模式工作提供了三重动作保护。

TEA1713和TEA1613自适应死区时间控制是第一重保护,可以延迟另一个MOSFET器件打开时间,直到电流恢复正常极性。MOSFET会在半桥斜坡结束后打开,因此可以确保电流已恢复正确安全的极性。参见图5。该功能可以防止MOSFET在体二极管未恢复时危险的开关动作。


图5;容性开关保护


容性模式发生后,谐振电流返回正常极性需要半个谐振周期,斜坡发生在半桥节点上。为了实现相对较长的等待时间,振荡器速度减慢直到检测到半桥斜坡起点。这是第二重保护动作。

第三重保护动作是在容性模式工作期间提高振荡器频率。该动作可以使转换器返回安全的感性模式。

3.2 具有补偿升压电压的两级过流保护

为了防止(短时)在大功率下运行导致元器件过热或者变压器饱和,恩智浦产品采用了两级过流保护设计。

第一步:电流较低时,通过调节频率来限制电流。该过流调节(OCR)功能在启动期间同样可以限制电流。

第二步:如果电流增加太快,OCR无法调节,比如输出短路。此时可采取更为有力的保护措施——立即将开关频率提到最高。这一过程也称为过流保护(OCP)。

谐振转换器的输入电压(升压后)通常由PFC产生,非常稳定。不过,在启动期间、市电降压、或者没有有源PFC的系统中,升压后的电压会比较低。因此,对于相同输出功率的谐振转换器,一次侧的电流会很高。TEA1713和TEA1613具有补偿升压电压功能,能够针对不同输入电压水平调整保护级别,因而可以提供更为准确的输出过流保护,增强电源负载保护能力,提高电源的使用安全。

图6给出了带升压电压补偿的OCR和OCP工作原理图。与升压后电压相关的电流从谐振控制器电流检测引脚流入/流出。利用外部串联电阻,设计人员可以自由设定补偿量。


图6:OCR和OCP的升压补偿


3.3 其他保护

TEA1713和TEA1613通过多重保护实现安全可靠的电源设计。过压保护(OVP输出)监控输出电压,保护负载。当反馈回路出现故障时,开环保护(OLP)动作。部分保护功能通过提高频率解决故障。如果增大频率无法解除故障,高频保护(HFP)将会探测到该故障并重新启动控制器。

有些保护,当超过保护电平时,可允许系统在有限的时间内工作。针对短时超限故障,系统集成了保护和重启定时器。如果超过预设时间后故障仍然存在,则控制器重新启动。定时器还可以设定重启时间。电源设计人员可以通过外部电容器和电阻器自行设定保护和重启时间。图7给出了保护和重启定时器的工作原理图。


图7:保护和重启计时器


4. 打嗝模式

有些应用,比如电源适配器,对轻载时的效率或空载下损耗有很高要求。打嗝模式是满足此类要求的好方法。在打嗝模式中,转换器工作较短时间后会有一个较长时间无动作过程。缩短开关时间可以显著减少开关和导通损失。

TEA1713和TEA1613控制器支持打嗝模式。激活打嗝模式可以控制PFC和HBC的开与关。对于HBC,两个MOSFET器件均关闭时控制器可记住开关频率。打嗝模式关闭后,HBC以相同频率继续执行开关动作。PFC以软启动开始工作。用外部控制器拉低TEA1713输出电压检测脚的电平,使HBC或HBC+PFC进入打嗝模式关闭状态。这种方法可以让设计人员更灵活地设计出更出色的激活打嗝模式的解决方案。

打嗝模式可以通过HBC反馈信号进行控制。利用比较器对比反馈信号与参考信号,可以产生打嗝模式开/闭信号。输出电压保持在可控范围内。TEA1613集成了打嗝模式比较器,可以通过外部电阻分压器设置优化打嗝电压。

打嗝电压检测点与来自PFC(升压)的HBC输入电压很有关系。对于使用无源PFC或者直接从市电降压情况,此电压会大幅波动,造成反馈电压大漂移。为了保证打嗝模式正常运行,最好要对打嗝参考电压进行补偿。为此,有时需要外接电阻连到升压电压,但该电阻容易增大功耗。TEA1613集成了升压电压补偿,与升压电压相关的电流从控制器打嗝检测输入端流出。电源设计人员可根据外部串联电阻器值,自由设定优化补偿量。


Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top