软开关技术综述
时间:09-17
来源:互联网
点击:
4 软开关技术的实现及其类型
变换器的软开关技术实际上是利用电感和电容来对开关的开关轨迹进行整形,最早的方法是采用有损缓冲电路来实现。从能量的角度来看,它是将开关损耗转移到缓冲电路消耗掉,从而改善开关管的开关条件。这种方法对变换器的变换效率没有提高,甚至会便效率有所降低。目前所研究的软开关技术不再采用有损缓冲电路,而是真正减小开关损耗,而不是开关损耗的转移。软开关变换器有谐振型变换器、零开关PWM变换器、零转换PWM变换器三种类型,以下将对其进行详细分析:
(1)谐振型变换器
利用谐振现象,使电子开关器件上电压或电流按正弦规律变化,以创造零电压开通或零电流关断的条件,以这种技术为主导的变换器称为谐振变换器。它又可以分为全谐振型变换器、准谐振变换器和多谐振变换器三种类型。
(a)全谐振型变换器
一般称之为谐振变换器(Resonant converters)。该类变换器实际上是负载谐振型变换器,按照不同的分类方式,它又可以分为不同的类型。
按照谐振元件的谐振方式,分为串联谐振变换器(Series resonant converters, SRCs)和并联谐振变换器(Parallel resonant converters, PRCs)两类。
按载与谐振电路的连接关系,谐振变换器可分为两类:一类是负载与谐振回路相串联,称为串联负载(或串联输出)谐振变换器(Series load resonant converters, SLRCs,);一类是负载与谐振回路相并联,称为并联负载(或并联输出)谐振变换器(Parallel load resonant converters, PLRCs),在谐振变换器中,谐振元件一直谐振工作,参与谐振工作的全过程。该变换器与负载关系很大,对负载的变化很敏感,一般采用频率调制方法。
(b)准谐振变换器(Quasi-resonant converters, QRCs) :它开关技术的一次飞跃,其特点是谐振元件参与能量变换的某一个阶段,不是全程参与。由于正向和反向LC回路值不一样,即振荡频率不同,电流幅值不同,所以振荡不对称。一般正向正弦半波大过负向正弦半波,所以常称为准谐振。无论是串联LC或并联LC都会产生准谐振。利用准谐振现象,使电子开关器件上的电压或电流按正弦规律变化,从而创造了零电压或零电流的条件,以这种技术为主导的变换器称为准谐振变换器。准谐振变换器分为零电流开关准谐振变换器(Zero-current-switching Quasi-resonant converters, ZCS QRCs)和零电压开关准谐振变换器(Zero-voltage-switching Quasi-resonant converters, ZVS QRCs)。
(c)多谐振变换器(Multi-resonant converters, MRCs):它和准谐振变换器一样,也是开关技术的一次飞跃,其特点是谐振元件参与能量变换的某一个阶段,不是全程参与。多谐振变换器的谐振回路、参数可以超过两个,例如三个或更多,称为多谐振变换器。多谐振变换器一般实现开关管的零电压开关。这类变换器需要采用频率调制控制方法。
为保持输出电压不随输入电压变化而变化,不随负荷变化而变化(或基本不变),谐振、准谐振和多谐振变换器主要靠调整开关频率,所以是调频系统。调频系统不如PWM开关变换器那样易控,这是因为调频系统是依靠L、C振荡使得电路产生谐振和准谐振的,L、C振荡所产生的正弦波具有较高的电压或电流的有效值,通常会使导电损耗有所增加,功率器件所受的电压与电流的应力都要比相应的硬开关PWM变换电路功率器件承受的压力大,并且该应力随电路的Q值和负载变化而变化。调频系统是依靠改变开关频率来改变变换器的输出,开关频率大范围变化使得滤波器、变压器设计难以优化,干扰难以抑制,而且由于调频来调节输出,负载变化大时,相应的电压和电流调节范围比相应PWM变换电路窄,超前一定范围后,变换电路不能达到零电压或零电流开关条件,不能达到满载或空载。因此为了克服调频系统的缺点和充分发挥PWM的优点,出现了零开关-PWM变换器和零转换-PWM变换器。
(2)零开关PWM变换器(Zero switching PWM converters):它可分为零电压开关PWM变换器(Zero-voltage-switching PWM converters)和零电流开关PWM变换器(Zero-current-switching PWM converters)。该类变换器是在准谐振变换器的基础上,加上一个辅助开关管,来控制谐振元件的谐振过程,实现恒定频率控制,即实现PWM控制。这样,变换器已有电压过零(或电流过零)控制的软开关特点,又有PWM恒频调宽的特点。这时谐振网络中的电感是与主开关串联的。与准谐振变换器不同的是,谐振元件的谐振工作时间与开关
周期相比很短,一般为开关周期的1/10"1/5。
(3)零转换PWM变换器(Zero transition converters):零转换-PWM变换器,与零开关-PWM变换器并无本质上的差别,也是软开关与PWM的结合。只不过谐振网络与主电子开关是相并联的。它可分为零电压转换PWM变换器(Zero-voltage-transition PWM converters, ZVT PWM converters)和零电流开关PWM变换器(Zero-current-transition PWM converters, ZVT PWM converters)。这类变换器是软开关技术的又一个飞跃。它的特点是变换器工作在PWM方式下,辅助谐振电路只是在主开关管开关时工作一段时间,实现开关管的软开关,在其他时间则停止工作,这样辅助谐振电路的损耗很小。
变换器的软开关技术实际上是利用电感和电容来对开关的开关轨迹进行整形,最早的方法是采用有损缓冲电路来实现。从能量的角度来看,它是将开关损耗转移到缓冲电路消耗掉,从而改善开关管的开关条件。这种方法对变换器的变换效率没有提高,甚至会便效率有所降低。目前所研究的软开关技术不再采用有损缓冲电路,而是真正减小开关损耗,而不是开关损耗的转移。软开关变换器有谐振型变换器、零开关PWM变换器、零转换PWM变换器三种类型,以下将对其进行详细分析:
(1)谐振型变换器
利用谐振现象,使电子开关器件上电压或电流按正弦规律变化,以创造零电压开通或零电流关断的条件,以这种技术为主导的变换器称为谐振变换器。它又可以分为全谐振型变换器、准谐振变换器和多谐振变换器三种类型。
(a)全谐振型变换器
一般称之为谐振变换器(Resonant converters)。该类变换器实际上是负载谐振型变换器,按照不同的分类方式,它又可以分为不同的类型。
按照谐振元件的谐振方式,分为串联谐振变换器(Series resonant converters, SRCs)和并联谐振变换器(Parallel resonant converters, PRCs)两类。
按载与谐振电路的连接关系,谐振变换器可分为两类:一类是负载与谐振回路相串联,称为串联负载(或串联输出)谐振变换器(Series load resonant converters, SLRCs,);一类是负载与谐振回路相并联,称为并联负载(或并联输出)谐振变换器(Parallel load resonant converters, PLRCs),在谐振变换器中,谐振元件一直谐振工作,参与谐振工作的全过程。该变换器与负载关系很大,对负载的变化很敏感,一般采用频率调制方法。
(b)准谐振变换器(Quasi-resonant converters, QRCs) :它开关技术的一次飞跃,其特点是谐振元件参与能量变换的某一个阶段,不是全程参与。由于正向和反向LC回路值不一样,即振荡频率不同,电流幅值不同,所以振荡不对称。一般正向正弦半波大过负向正弦半波,所以常称为准谐振。无论是串联LC或并联LC都会产生准谐振。利用准谐振现象,使电子开关器件上的电压或电流按正弦规律变化,从而创造了零电压或零电流的条件,以这种技术为主导的变换器称为准谐振变换器。准谐振变换器分为零电流开关准谐振变换器(Zero-current-switching Quasi-resonant converters, ZCS QRCs)和零电压开关准谐振变换器(Zero-voltage-switching Quasi-resonant converters, ZVS QRCs)。
(c)多谐振变换器(Multi-resonant converters, MRCs):它和准谐振变换器一样,也是开关技术的一次飞跃,其特点是谐振元件参与能量变换的某一个阶段,不是全程参与。多谐振变换器的谐振回路、参数可以超过两个,例如三个或更多,称为多谐振变换器。多谐振变换器一般实现开关管的零电压开关。这类变换器需要采用频率调制控制方法。
为保持输出电压不随输入电压变化而变化,不随负荷变化而变化(或基本不变),谐振、准谐振和多谐振变换器主要靠调整开关频率,所以是调频系统。调频系统不如PWM开关变换器那样易控,这是因为调频系统是依靠L、C振荡使得电路产生谐振和准谐振的,L、C振荡所产生的正弦波具有较高的电压或电流的有效值,通常会使导电损耗有所增加,功率器件所受的电压与电流的应力都要比相应的硬开关PWM变换电路功率器件承受的压力大,并且该应力随电路的Q值和负载变化而变化。调频系统是依靠改变开关频率来改变变换器的输出,开关频率大范围变化使得滤波器、变压器设计难以优化,干扰难以抑制,而且由于调频来调节输出,负载变化大时,相应的电压和电流调节范围比相应PWM变换电路窄,超前一定范围后,变换电路不能达到零电压或零电流开关条件,不能达到满载或空载。因此为了克服调频系统的缺点和充分发挥PWM的优点,出现了零开关-PWM变换器和零转换-PWM变换器。
(2)零开关PWM变换器(Zero switching PWM converters):它可分为零电压开关PWM变换器(Zero-voltage-switching PWM converters)和零电流开关PWM变换器(Zero-current-switching PWM converters)。该类变换器是在准谐振变换器的基础上,加上一个辅助开关管,来控制谐振元件的谐振过程,实现恒定频率控制,即实现PWM控制。这样,变换器已有电压过零(或电流过零)控制的软开关特点,又有PWM恒频调宽的特点。这时谐振网络中的电感是与主开关串联的。与准谐振变换器不同的是,谐振元件的谐振工作时间与开关
周期相比很短,一般为开关周期的1/10"1/5。
(3)零转换PWM变换器(Zero transition converters):零转换-PWM变换器,与零开关-PWM变换器并无本质上的差别,也是软开关与PWM的结合。只不过谐振网络与主电子开关是相并联的。它可分为零电压转换PWM变换器(Zero-voltage-transition PWM converters, ZVT PWM converters)和零电流开关PWM变换器(Zero-current-transition PWM converters, ZVT PWM converters)。这类变换器是软开关技术的又一个飞跃。它的特点是变换器工作在PWM方式下,辅助谐振电路只是在主开关管开关时工作一段时间,实现开关管的软开关,在其他时间则停止工作,这样辅助谐振电路的损耗很小。
开关电源 半导体 电压 电路 变压器 场效应管 MOSFET IGBT PWM 电力电子 电流 射频 电感 电容 二极管 电子 滤波器 相关文章:
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 开关电源要降低纹波主要要在三个方面下功夫(06-24)
- 超宽输入范围工业控制电源的设计(10-15)