“1+1”UPS并机系统供电系统研究
时间:09-11
来源:互联网
点击:
[/table]而言,它的最恶劣工作条件是发生在电机组刚被投入到它的后接UPS供电系统的输入端的瞬间。因为,此时、它必须要提供足够大的瞬态电流來满足由后接的电感性的电力稳压器所可能产生的开机启动瞬态浪涌电流。目前,有两种发电机型可供我们选择:无刷、自励磁式的发电机和无刷、永磁发电机励磁式的发电机。相关的运行统计资料表明:无刷、永磁发电机励磁式发电机的带瞬态浪涌电流的抗”冲击”的能力是优于无刷自激励励磁式的发电机的带瞬态浪涌电流” 冲击”能力的(有的资料称,可提高1.4倍左右)。鉴于目前现有的发电机是属于无刷、自励磁式的发电机。相对地而言,它的瞬态带载能力较弱。在此背景下,为了尽可能地发挥这种发电机的潜在驱动能力和为后接的UPS供电系统提供尽可能良好的运行环境。在调试中,釆用将它的输出电压从402V调节到396V, 工作频率从50Hz调到51Hz的技术措施。这是因为:对于特定的发电机而言,如果适当地将它的输出频率调高的话,会有利于提高它的输出功率。在釆取这种措施后、所进行的发电机带载实验证实:它的確可以使得UPS供电系统的运行状态获得了进一步的改善。然而,此时的运行状态仍不能达到令人满意的程度。主要表现为:发电机的输出电压仍然不够稳定和声音仍有”异常”。 |
|
(d)根据过去的测试数据发现:对于同一套的UPS供电系统而言,不论它是处于市电供电、还是处于发电机供电的条件下运行,它可能反馈到输入电源的谐波电流是基本相同的、不会有数量级的变化。在此条件下,釆用发电机电源供电方式与釆用市电电源供电方式所可能带來的主要变化是:发电机电源的内阻明显地高于市电电源的内阻。因此,在将釆用发电机电源带载时的运行状态同釆用市电电源带载时的运行状态进行比较时、就可发现:它对输入电源所可能产生的影响是:将会导致供电电源的输入电压谐波分量THDV增大,从而致使它的输入电压波形的畸变度有所增大。 |
|
|
如图2所示,同市电供时、出现在两台UPS输入端的的电压波形相比,当改用发电机供电时,出现在它的输入电压波形上的畸变度明显地增大(此时,可在它的电压波形上、观察到频率较高的瞬态”电压跃变”现象)。众所周知:当这种畸变度增大的电压信号被送同时到发电机和电力稳压器的自动稳压调控线路中的电压釆样信号线路的输入端上时、由此所造成的恶果之一是:迫使位于伺服调控式电力稳压器中的仅具有25V/秒左右的低速跟踪运动特性的碳刷所执行的”慢速机械移动”的调控操作、始终无法同步跟踪从电子控制线路所发出的高速自动调压控制信号。这是因为碳刷所执行的是具有极大延时特性的、机械移动式的自动调压操作,从而迫使电力稳压器进入一种具有明显”滞后跟踪”特性的、“自激振荡式”的“误调”的工作状态之中(其表现为:碳刷始终处于无规则的、不停的“上、下移动”之中),从而使得它始终无法进入稳定的自动调压工作状态。为改善电力稳压器的运行条件,可釆用技术措施之一是:釆用适当地降低它的标称稳压精度的办法來达到尽可能地减少“伺服调整碳刷”执行自动调压操作的频度,从而达到让它进入慢速跟踪的自动调压状态。在这里,釆用的办法是:将电力稳压器的输出电压的稳压范围从380V±1%扩大为380V±2.6%(370伏—390伏)。至此,150KVA的发电机就能正常地驱动由两台100KVA电力稳压器+6脉冲的80KVA“1+1”并机系统所组成的整套UPS供电系统,仅在发电机刚投入的瞬间、发电机还存在短暂的声音稍有异常的现象。 |
|
3、经”系统匹配性”调控操作的技术改进后、所检测到的由发电机、电力稳压器和UPS并机供电系统所组成的供电系统的输入谐波特性 |
|
为了证实对由发电机、电力稳压器和UPS并机供电系统所组成的供电系统所执行的系统匹配性和兼容性的调控操作的合理性,对该系统进行如下输入谐波特性的检测: |
(a) 将两台电力稳压器的”开机启动时间”错开所带來的性能改善 |
在150KVA发电机供电条件下、釆用手动切换操作的方法,从市电供电切换到发电机供电后、所测得的UPS供电系统的两次”开机启动输入电流”的典型波形图被示于3中。从该图可以清晰地、分别地观察到三种启动浪涌电流:电力稳压器1的开机启动浪涌电流、电力稳压器2的开机启动浪涌电流、UPS的缓启动输入“爬升”电流。从这样的测试结果可以得到如下结论:在釆用将两台电力稳压器的”开机启动浪涌电流”的出现时间 “错开”3秒左右的技术措施之后,所带來的明显好处是:它大大地降低了在毎台电力稳压器被开机启动时所可能产生的瞬态浪涌电流的幅度,经多次开机启动测试后,发现:在此条件下,可能出现在两台电力稳压器的输入端的瞬态电流的峰值都小于100A。与此相反,在未釆用这样的技术措施之前,曾经被检测到的最大浪涌电流的峰值却高达220A左右。 |
电流 电压 逆变器 电感 电子 IGBT 滤波器 LCD 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)