有源功率因数校正技术在开关电源中的应用研究
时间:07-25
来源:互联网
点击:
输入浪涌电流抑制
隔离式开关电源在加电时,由于滤波电容充电的影响,在开关管开始导通的瞬间,电容对交流呈现出很低的阻抗,在输入端会产生极高的浪涌电流。所以必须在电源的输入端采取限流措施,以求能够有效地将浪涌电流减小到允许的范围之内。本文采用负温度系数的热敏电阻(NTC)串联在交流输入端,用以增加对交流线路的阻抗,把浪涌电流减小到安全值。当开关电源接通时,热敏电阻的阻值基本上是电阻的标称值。这样,由于阻值较大,它就限制了浪涌电流。当电容开始充电,充电电流流过热敏电阻,开始对其加热。由于热敏电阻具有负温度系数,随着电阻的加热,其电阻值开始下降,如果热敏电阻选择合适,在负载电流达到稳定状态时,其阻值应该是最小,这样,就不会影响整个开关电源的效率。
滤波电路设计
电磁干扰会对电气产品的正常工作产生很大的干扰,如干扰过大,会影响整个产品的3CR认证要求和控制部分的正常工作,而电源滤波器则是开关电源EMC设计的重要部件。交流输入电路与L和C组成的低通滤波网络相连,其作用是抑制电网上来的电磁干扰,同时,它还对开关电源本身产生的电磁干扰有抑制作用,以保证电网不受污染。在本次实验电路结构图中,采用L和C组成常模和共模抗干扰回路,这种组合对各种高频干扰信号的抑制作用较好。
高频开关电源产生的EMI主要以传导干扰和近场干扰为主。共模干扰和差模干扰是传导干扰的两种基本模态,EMI滤波器是目前使用最广泛,也是最有效的开关电源传导干扰抑制方法之一。EMI滤波器不但要抑制差模干扰,也必须抑制共模干扰,它的基本电路可以参照后面给出的实验电路结构图。
共模扼流圈一般在铁氧体上绕制,因为铁氧体的导磁率很高,可以获得很大的电感量,而由于共模扼流圈的特殊绕制方法,没有磁芯饱和的危险。差模扼流圈一般在铁粉磁芯上绕制,这种磁芯不易发生饱和,但是磁导率较低。有时为了避免磁芯饱和,在磁路开放的磁芯上绕制,通过减小磁芯中的磁通密度来避免饱和;这时要注意电感也是一个非常高效的磁场接收器件,会将周围的干扰收集到电感上,形成新的干扰,必要时可以采取屏蔽措施。
利用电感器同电容组成滤波电路来抑制共模干扰,这种电感器件串入电路中对工作状态不加干涉,而对共模干扰起到抑制作用。它的结构是在一只磁芯上绕制两个相同绕组的线圈,工作时将这两个线圈分别串接在电源上,当工作电流接通时磁芯中的磁动势相互抵消,因而磁芯材料不受任何影响,不必担心其磁饱和。在这次研制过程中,我们采用频率特性好、导磁率高的铁氧体材料。
实际上,在电磁兼容应用中,最常用的是共模滤波。这是因为大量的电磁干扰是从空间耦合到线缆上的。这种干扰形成的干扰电压是共模电压。
共模扼流圈能滤除低频噪声,一般来说电感值越大,对低频(1MHz以下)段传导干扰抑制效果越明显。图1是功率因数校正电路的传导干扰测试结果,对于锰锌铁氧体磁芯,增大电感量以后,1MHz以下的干扰水平明显降低,尤其在0.1~0.7MHz频段内,干扰水平下降了20dB。比较后可看出,应根据所要滤除的噪声的频率下限选取扼流圈的电感值。
硬件电路结构及工作原理
图2所示为APFC硬件电路结构图,电路采用内外双环反馈控制方案。内环反馈的作用是将全波整流输出直流脉动电压取样输入到MC33262,以保证通过变压器T4的电流时刻跟踪输入电压按正弦轨迹规律变化。通过T4的三角形高频电流的峰值包络线正比于输入交流电压,其平均电流则呈正弦波形,这就意味着电源输入电流也呈正弦波。外环实现对APFC变换器输出直流电压的监控。直流输出电压通过电阻分压器取样输入到MC33262,MC33262则输出占空比可调的PWM驱动信号控制MOSFET导通关断,确保输出电压稳定。


输入端交流电压经桥式整流后,输出100Hz的正弦半波直流脉动电压,经过电阻分压器分压,在R4上的取样电压经小电容C4滤除高频噪声输入到芯片内部的乘法器。滤波电容EC1两端直流电压通过R12、R13和R14分压输入到芯片内部误差放大器的反相端,并与误差放大器同相端精密参考电压Uref比较,产生一个输出直流电压的误差信号,作为一象限乘法器的另一路输入。当AC输入电压从零按正弦规律变化到峰值时,乘法器的输出控制电流传感比较器的门限,迫使通过MOSFET功率管Q1的峰值电流跟踪AC输入电压的变化轨迹。流过MOSFET功率管Q1的电流在电阻R11上转换为电压信号,输入到MC33262芯片内电流检测比较器的正向输入端。变压器T4电流的波形呈高频锯齿三角波,在电流值从零增长到峰值的过程中,Q1是导通的。乘法器的输出则是电感峰值电流的参考电压,只要在R11上的传感电压超过电流检测比较器的门限电压,片内逻辑电路动作,输出MOSFET功率管关断信号。
变压器T4的副边绕组NS将感应电压经D1整流EC3滤波,作为MC33262芯片启动后的辅助电源;NS还用做T4的高灵敏度的电流传感器。NS将流过T4的电流检测后,经限流电阻R7输入到片内零电流检测器,只要电感电流降至芯片所设置的“零”电平,零电流检测器则通过置位门锁驱动MOSFET导通。
由于在电感电流下降到零之前,MOSFET不会导通,而在其导通期间,升压二极管则一直截止,所以对升压整流二极管D3的反向恢复时间要求不是很苛刻。
理论上,变压器T4的导通时间是恒定的,实际上由于受整流桥后接滤波器充电的影响,在交流电压过零处导通时间有所增加。T4的关断时间在交流电压的峰值处最大,在交流电压的过零处则趋向于零。所以最小的开关频率出现在交流电压的峰值处,随着交流电压从峰值走向过零,开关频率不断升高。这一点,从下面开关频率的计算公式也可以看出。

式中,UAC为输入交流电压的有效值;η为变换器效率;L为T4电感量;Uo为变换器输出直流电压;Po为输出功率;wt为交流输入电压的相位角。
电路中其它具体重要参数比如电感值、输出电容值、分压电阻、电感电流采样电阻、MOS管电压电流参数的选取和计算公式在参考文献[4]中已经做了详细讨论,本文不再重复。
开关电源 电压 电流 电容 电子 电路 滤波器 EMC 电感 比较器 放大器 电阻 变压器 PWM MOSFET 传感器 二极管 PCB 相关文章:
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 开关电源要降低纹波主要要在三个方面下功夫(06-24)
- 超宽输入范围工业控制电源的设计(10-15)
鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...
栏目分类