智能路灯管制系统设计与利用斟酌
时间:12-09
来源:互联网
点击:
3 基于通讯网络的智能路灯控制系统设计与使用
无论是何种智能路灯控制系统,都须要举行远程监测和维护,这肯定须要通讯网络,而通讯方式有许多种,如采用电信系统网络、Internet、或其他网络等。其中属Internel.功用最强悍、速度和效率最快,它能够议决各地域的分控制器或控制柜,嵌人计算机模块,完成它们的TCP/IP协议,从而能够使得分控制器能够接受主控制中心的远程命令和维护,同时它也可以依据须要就信息数据给予中心及时的反应,这种方式是值得倡议和推行的。现引见几种其他通讯方式的使用。
3.1 基于GSM/GPRS的智能路灯控制系统设计与使用
智能控制型路灯的远程通讯办法许多,采用电信系统中的GSM(Global System for Mobile Communieation,全球挪动通讯系统)或GPRS(General Packet RadioService,通用分组无线业务)网络来完成智能控制路灯的远程维护和监控,使用GSM的本钱低、频谱使用率高、系统容量大、保密性好、抗搅扰才干强、自动遨游等优点,直接把要发的信息加上目标地址发送即可;而GPRS是在GSM系统的根本上使用分组交流技术树立的,它在兼容GSM的同时能在网络上传输高速数据,使用GPRS的资源使用率高、传输速度快、接入时间短、随时在线访问查询、支持TCP/IP协议等优点,故GPRS网络特别适宜于频发小数据量的及时传输,这正好契合智能控制路灯的遥控设计思绪。
路灯智能监控系统是一个散布式、集散型、网络化、全开放的监控系统。监控中心对全体路灯系统控制,向分控点发出命令,对分控点的运转形态、电流、电压、电量等参数举行采集,并将信息反应给监控中心,供显示屏显示、打印机打印及维护人员剖析处置,同时对分站内路灯举行开/关控制,如图2所示。

随着计算机嵌入式技术的成长,通常能够使用GSM和GPRS的技术模块嵌入到现场单片机控制器中,从而完成无线远程路灯的智能监控和维护,为交通运输工程提供高速、在线、通明的数据通讯网络,如图3所示。

3.2 基于ZigBee网络的智能路灯控制系统设计与使用
ZigBee是IEEE 802.15.4协议的代名词。依据这个协议规则的技术是一种短距离、低功耗的无线通讯技术。其特征是近距离、低庞杂度、自组织、低功耗、低数据速率、低本钱。首要适宜用于自动控制和远程控制范围,能够嵌入各种配备。简而言之,ZigBee就是一种廉价的,低功耗的近距离无线组网通讯技术。它是一个由可多到65 000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间能够相互通讯,每个网络节点间的距离可依据须要从规范的75 m无限扩展。
正是使用ZigBee网络的特征,将其使用到智能路灯无线控制系统中,这使得在路灯维护中十分适宜运用ZigBee技术。运用ZigBee无线通讯,可完成如下功用:无线控制、信号传递、传递一些辅佐控制信号和监视信号、高速巡检、交通灯智能维护等。
4 基于控制方式的智能路灯控制系统设计与使用
传统的智能路灯控制普通采用:时问控制、光照控制等,这类控制普通是依据时节、气候、时差等要素,由首要控制中心对某一区域内的交通路灯举行开关、时间、光照强度调控的方式。这类控制方式在特殊时段对交通熄灯、降低亮灯率、降低光照强度的做法,虽然浪费了电资源,愈加经济,但是也为交通安全增添了隐患。
许多揣摩组织发觉,路灯一开端点亮时所需电压大于等于额外电压,在运用固定现在仅须要较低一些的电压任务即可;据揣摩,照亮堂度降低10%,人眼的感光度仅仅降低仅为1%;而路途在后半夜时,属于用电低峰时期,电灯的实践运用电压会渐渐长高.这不只加强了路灯的亮度、构成电资源糜费,并且缩减了电灯的运用寿命。故基于上述观念,出现了许多电压控制的方式,即在特殊时段或依据详细须要,议决各分控制器调控路灯的实践运用电压,这有效地克制了上述缺陷。
如今出现了愈加智能、愈加节能、且同时也不降低交通安全的控制方式:“随需而控”。将无线通讯技术、微机电MEMS系统和传感技术融合到一同的无线传感器网络技术,它议决装置在路灯上的光学、声学、电学、速度传感器(多普勒探测器),或采用上述光学、声学、电学、速度的探测器(监控自然条件的亮度、路途行人和行车的声响和速度、电灯的实践运用电压和功率等),然后配上智能单片机或PLC控制器和无线通讯技术,完成对路灯的开关、亮度调理、电压调理以及亮电灯率的控制。使用该智能路灯控制系统(见图4),只需路上有人或车辆议决时路灯才点亮,且可依据行人和车辆议决的声响、速度智能地翻开前面必须数目标路灯,同时熄灭经历路段的路灯,在提高路灯使用率、浪费电资源的同时,又满足了在夜间行人、车辆出行时的路途照明,确保了交通安全。

无论是何种智能路灯控制系统,都须要举行远程监测和维护,这肯定须要通讯网络,而通讯方式有许多种,如采用电信系统网络、Internet、或其他网络等。其中属Internel.功用最强悍、速度和效率最快,它能够议决各地域的分控制器或控制柜,嵌人计算机模块,完成它们的TCP/IP协议,从而能够使得分控制器能够接受主控制中心的远程命令和维护,同时它也可以依据须要就信息数据给予中心及时的反应,这种方式是值得倡议和推行的。现引见几种其他通讯方式的使用。
3.1 基于GSM/GPRS的智能路灯控制系统设计与使用
智能控制型路灯的远程通讯办法许多,采用电信系统中的GSM(Global System for Mobile Communieation,全球挪动通讯系统)或GPRS(General Packet RadioService,通用分组无线业务)网络来完成智能控制路灯的远程维护和监控,使用GSM的本钱低、频谱使用率高、系统容量大、保密性好、抗搅扰才干强、自动遨游等优点,直接把要发的信息加上目标地址发送即可;而GPRS是在GSM系统的根本上使用分组交流技术树立的,它在兼容GSM的同时能在网络上传输高速数据,使用GPRS的资源使用率高、传输速度快、接入时间短、随时在线访问查询、支持TCP/IP协议等优点,故GPRS网络特别适宜于频发小数据量的及时传输,这正好契合智能控制路灯的遥控设计思绪。
路灯智能监控系统是一个散布式、集散型、网络化、全开放的监控系统。监控中心对全体路灯系统控制,向分控点发出命令,对分控点的运转形态、电流、电压、电量等参数举行采集,并将信息反应给监控中心,供显示屏显示、打印机打印及维护人员剖析处置,同时对分站内路灯举行开/关控制,如图2所示。

随着计算机嵌入式技术的成长,通常能够使用GSM和GPRS的技术模块嵌入到现场单片机控制器中,从而完成无线远程路灯的智能监控和维护,为交通运输工程提供高速、在线、通明的数据通讯网络,如图3所示。

3.2 基于ZigBee网络的智能路灯控制系统设计与使用
ZigBee是IEEE 802.15.4协议的代名词。依据这个协议规则的技术是一种短距离、低功耗的无线通讯技术。其特征是近距离、低庞杂度、自组织、低功耗、低数据速率、低本钱。首要适宜用于自动控制和远程控制范围,能够嵌入各种配备。简而言之,ZigBee就是一种廉价的,低功耗的近距离无线组网通讯技术。它是一个由可多到65 000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间能够相互通讯,每个网络节点间的距离可依据须要从规范的75 m无限扩展。
正是使用ZigBee网络的特征,将其使用到智能路灯无线控制系统中,这使得在路灯维护中十分适宜运用ZigBee技术。运用ZigBee无线通讯,可完成如下功用:无线控制、信号传递、传递一些辅佐控制信号和监视信号、高速巡检、交通灯智能维护等。
4 基于控制方式的智能路灯控制系统设计与使用
传统的智能路灯控制普通采用:时问控制、光照控制等,这类控制普通是依据时节、气候、时差等要素,由首要控制中心对某一区域内的交通路灯举行开关、时间、光照强度调控的方式。这类控制方式在特殊时段对交通熄灯、降低亮灯率、降低光照强度的做法,虽然浪费了电资源,愈加经济,但是也为交通安全增添了隐患。
许多揣摩组织发觉,路灯一开端点亮时所需电压大于等于额外电压,在运用固定现在仅须要较低一些的电压任务即可;据揣摩,照亮堂度降低10%,人眼的感光度仅仅降低仅为1%;而路途在后半夜时,属于用电低峰时期,电灯的实践运用电压会渐渐长高.这不只加强了路灯的亮度、构成电资源糜费,并且缩减了电灯的运用寿命。故基于上述观念,出现了许多电压控制的方式,即在特殊时段或依据详细须要,议决各分控制器调控路灯的实践运用电压,这有效地克制了上述缺陷。
如今出现了愈加智能、愈加节能、且同时也不降低交通安全的控制方式:“随需而控”。将无线通讯技术、微机电MEMS系统和传感技术融合到一同的无线传感器网络技术,它议决装置在路灯上的光学、声学、电学、速度传感器(多普勒探测器),或采用上述光学、声学、电学、速度的探测器(监控自然条件的亮度、路途行人和行车的声响和速度、电灯的实践运用电压和功率等),然后配上智能单片机或PLC控制器和无线通讯技术,完成对路灯的开关、亮度调理、电压调理以及亮电灯率的控制。使用该智能路灯控制系统(见图4),只需路上有人或车辆议决时路灯才点亮,且可依据行人和车辆议决的声响、速度智能地翻开前面必须数目标路灯,同时熄灭经历路段的路灯,在提高路灯使用率、浪费电资源的同时,又满足了在夜间行人、车辆出行时的路途照明,确保了交通安全。

单片机 电压 传感器 电流 LCD GPS 嵌入式 ZigBee MEMS PLC 相关文章:
- 基于nRF2401智能无线火灾监控系统设计(04-01)
- 家居安防无线监控报警系统(04-02)
- 高精度压力测控系统的试验研究(04-08)
- 提高实时系统数据采集质量的研究(04-09)
- 基于MSP430的低功耗便携式测温仪设计(06-18)
- 以超低功耗微处理器MSP430为核心的热计量表设计(06-18)
