基于电磁兼容的地下建筑防雷设计
时间:07-28
来源:互联网
点击:
3.3内部防雷
内部防雷是指对雷电波侵入的防护,其技术措施可分为屏蔽措施、均压等电位措施和过电压保护措施三部分。
3.3.1屏蔽措施
采用分级屏蔽措施,分三级屏蔽,分别对应保护区1,2,3的屏蔽。
(1)一级屏蔽
国内有专家分析认为雷电的能量大多分布在频率为10多千赫以下,且有学者研究了钢筋混凝土对电磁脉冲的屏蔽效能,得出对100 kHz以下的平面波型电磁脉冲峰值,钢筋混凝土的电场屏蔽效能可达40 dB左右,磁屏蔽效能可达20 dB左右。钢筋混凝土屏蔽效能加上岩土层对雷电脉冲的约20 dB的屏蔽效能后,可以得出总的屏蔽效能大约在60 dB左右,对于民用地下建筑物来说,以钢筋混凝土作为一级屏蔽已经足够了,但是对于军用地下建筑物而言,该屏蔽效能还远远不够,需要实施钢板整体屏蔽。在一级屏蔽中,要将建筑物的钢筋网、金属构架、金属门窗、金属水管、金属通风管等与地板相互连接在一起,形成法拉第网,并与地网有可靠的电气连接,形成一级屏蔽网。
(2)二级屏蔽
对于重要设备,如计算机网络系统、通信系统等,由于易受干扰,常有专门的机房,在一级屏蔽防护达不到要求的情况下,需要采取专门的屏蔽措施,例如在机房的墙面上刷电磁屏蔽涂料,采用金属结构的墙体等,同时需要将机房墙体、金属构件等接入接地网,形成次级屏蔽网。
(3)三级屏蔽
设备的屏蔽效果首先取决于初级屏蔽网和次级屏蔽网的衰减程度,其次取决于设备机箱对电磁波的反射损耗程度和吸收损耗程度,这又与所使用屏蔽材料的种类和厚度有关。由于大多电子设备在出厂时已经充分考虑了电磁兼容性,机箱具有较好的屏蔽电磁干扰的能力,因此三级屏蔽时应主要考虑屏蔽接地。在电子设备和电子系统中,各种电路均有电位基准,将所有的基准点连接到一个导体平面上(基准平面),所有信号都是以该基准平面作为零电位参考点,电子设备常以其金属底座为基准面,为了设备的工作稳定和操作人员的安全,应将基准面与接地网相连。各设备只要有着良好的接地,就可以为雷击等造成的感应电流提供通畅的泄流途径,避免在各机壳上生成高电压,带来损坏设备和伤害人员的危险。
3.3.2均压等电位连接
均压等电位连接是内部防雷装置的一部分,其目的在于减小雷电流引起的电位差。等电位连接的具体做法是把建筑物的金属通风管道、金属下水管道和其他大件金属物以及建筑物梁、柱内的钢筋作良好的电气连接,并与所有接地网作良好的电气连接。这样,地下建筑物的所有电方面是全部连通的,当发生雷击的时候整个建筑物成为一个统一的带电体,各部分的电位差比不连接的时候远远要小,特别是各金属物与其附近的金属体之间电位差近于0。因此不会发生闪击放电或者破坏建筑物的事故。
3.3.3过电压保护
雷电侵害主要是通过线路侵入。外部防雷中的输电线杆塔以及变压器上安装的避雷器虽然为电源提供了一级保护;但是通过传导来的线路过电压和过电流仍然足以干扰各系统的正常工作,为此,在地下建筑内部总配电盘至各机房配电箱间电缆内芯线两端应对地加装避雷器,作为二级保护;在所有重要的、精密的设备以及UPS的前端应对地加装避雷器,作为三级保护。目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分93流泄入大地,达到保护目的。
内部防雷的屏蔽、均压等电位接地以及过电压保护三部分是相互配合,各行其责,缺一不可的。
3.4内外部防雷的联合接地
内外部防雷的联合接地同样是根据等电位连接原理,把各内外接地网通过金属体相互连接起来,使他们之间成为电气相通的统一接地网。采用联合接地的原因有2个:
(1)各通讯系统、计算机系统和电源系统的接地是为了获得一个零电位点。如果各系统分别接地,当发生雷击的时候各个系统接地点的电位可能相差很大。
(2)由于各系统采用独立接地方式时要求各地网之间至少要有近20 m的安全距离,同时又要与各种金属管道、电缆金属屏蔽层和各大金属构件要有足够的距离,这些在实际设计和施工中是难以做到的[5]。图4为采用联合接地方式后的地下建筑物防雷系统示意图。
4结语
对地下建筑防雷系统的设计并没有固定不变的模式,因为影响地下建筑防雷系统设计的因素实在很多,这些因素包括有地下建筑物的种类、地理位置、当地气候条件、内部设备系统的种类及布局等。因此要设计具体的地下建筑物的防雷系统必须充分调查,因地制宜,并合理应用各种防护措施,才能保证建筑物内各设备及系统的电磁兼容性,避免雷击造成设备的损 坏及人员的
内部防雷是指对雷电波侵入的防护,其技术措施可分为屏蔽措施、均压等电位措施和过电压保护措施三部分。
3.3.1屏蔽措施
采用分级屏蔽措施,分三级屏蔽,分别对应保护区1,2,3的屏蔽。
(1)一级屏蔽
国内有专家分析认为雷电的能量大多分布在频率为10多千赫以下,且有学者研究了钢筋混凝土对电磁脉冲的屏蔽效能,得出对100 kHz以下的平面波型电磁脉冲峰值,钢筋混凝土的电场屏蔽效能可达40 dB左右,磁屏蔽效能可达20 dB左右。钢筋混凝土屏蔽效能加上岩土层对雷电脉冲的约20 dB的屏蔽效能后,可以得出总的屏蔽效能大约在60 dB左右,对于民用地下建筑物来说,以钢筋混凝土作为一级屏蔽已经足够了,但是对于军用地下建筑物而言,该屏蔽效能还远远不够,需要实施钢板整体屏蔽。在一级屏蔽中,要将建筑物的钢筋网、金属构架、金属门窗、金属水管、金属通风管等与地板相互连接在一起,形成法拉第网,并与地网有可靠的电气连接,形成一级屏蔽网。
(2)二级屏蔽
对于重要设备,如计算机网络系统、通信系统等,由于易受干扰,常有专门的机房,在一级屏蔽防护达不到要求的情况下,需要采取专门的屏蔽措施,例如在机房的墙面上刷电磁屏蔽涂料,采用金属结构的墙体等,同时需要将机房墙体、金属构件等接入接地网,形成次级屏蔽网。
(3)三级屏蔽
设备的屏蔽效果首先取决于初级屏蔽网和次级屏蔽网的衰减程度,其次取决于设备机箱对电磁波的反射损耗程度和吸收损耗程度,这又与所使用屏蔽材料的种类和厚度有关。由于大多电子设备在出厂时已经充分考虑了电磁兼容性,机箱具有较好的屏蔽电磁干扰的能力,因此三级屏蔽时应主要考虑屏蔽接地。在电子设备和电子系统中,各种电路均有电位基准,将所有的基准点连接到一个导体平面上(基准平面),所有信号都是以该基准平面作为零电位参考点,电子设备常以其金属底座为基准面,为了设备的工作稳定和操作人员的安全,应将基准面与接地网相连。各设备只要有着良好的接地,就可以为雷击等造成的感应电流提供通畅的泄流途径,避免在各机壳上生成高电压,带来损坏设备和伤害人员的危险。
3.3.2均压等电位连接
均压等电位连接是内部防雷装置的一部分,其目的在于减小雷电流引起的电位差。等电位连接的具体做法是把建筑物的金属通风管道、金属下水管道和其他大件金属物以及建筑物梁、柱内的钢筋作良好的电气连接,并与所有接地网作良好的电气连接。这样,地下建筑物的所有电方面是全部连通的,当发生雷击的时候整个建筑物成为一个统一的带电体,各部分的电位差比不连接的时候远远要小,特别是各金属物与其附近的金属体之间电位差近于0。因此不会发生闪击放电或者破坏建筑物的事故。
3.3.3过电压保护
雷电侵害主要是通过线路侵入。外部防雷中的输电线杆塔以及变压器上安装的避雷器虽然为电源提供了一级保护;但是通过传导来的线路过电压和过电流仍然足以干扰各系统的正常工作,为此,在地下建筑内部总配电盘至各机房配电箱间电缆内芯线两端应对地加装避雷器,作为二级保护;在所有重要的、精密的设备以及UPS的前端应对地加装避雷器,作为三级保护。目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分93流泄入大地,达到保护目的。
内部防雷的屏蔽、均压等电位接地以及过电压保护三部分是相互配合,各行其责,缺一不可的。
3.4内外部防雷的联合接地
内外部防雷的联合接地同样是根据等电位连接原理,把各内外接地网通过金属体相互连接起来,使他们之间成为电气相通的统一接地网。采用联合接地的原因有2个:
(1)各通讯系统、计算机系统和电源系统的接地是为了获得一个零电位点。如果各系统分别接地,当发生雷击的时候各个系统接地点的电位可能相差很大。
(2)由于各系统采用独立接地方式时要求各地网之间至少要有近20 m的安全距离,同时又要与各种金属管道、电缆金属屏蔽层和各大金属构件要有足够的距离,这些在实际设计和施工中是难以做到的[5]。图4为采用联合接地方式后的地下建筑物防雷系统示意图。
4结语
对地下建筑防雷系统的设计并没有固定不变的模式,因为影响地下建筑防雷系统设计的因素实在很多,这些因素包括有地下建筑物的种类、地理位置、当地气候条件、内部设备系统的种类及布局等。因此要设计具体的地下建筑物的防雷系统必须充分调查,因地制宜,并合理应用各种防护措施,才能保证建筑物内各设备及系统的电磁兼容性,避免雷击造成设备的损 坏及人员的
电流 电子 变压器 电压 电感 电阻 滤波器 电路 相关文章:
- 航天器DC/DC变换器的可靠性设计(02-12)
- 基于nRF2401智能小区无线抄表系统集中器设计(04-30)
- 卫星电源分系统可靠性设计与研究(02-12)
- 采用信号调理IC驱动应变片电桥传感器(05-26)
- 解密波音747飞机中的Sperry垂直陀螺仪(05-06)
- 安森美90W太阳能LED街灯高能效解决方案(05-18)
