在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法
时间:11-26
来源:互联网
点击:
如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:
1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
2)对于少于100脚的产品,有2种接法:
2.1)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。
2.2)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面2.1)节省2个外部电阻。
以下是在ST英文网站FAQ上抄下的详细解释:
1) In 100 and 144 packages, the OSC_IN /OSC_Out pins are a dedicated pins for HSE and mapped respectively on pins 12, 13 and pins 23, 24 for LQFP packages. Although, for BGA 100 and BGA 144 packages, they are mapped respectively on pins C1,D1 and pins D1,E1. In this case the recommended configuration is:
OSC_In pin must be connected to ground as it is always an input pin
OSC_Out must be left not connected as it is always an output pin.
2) In LQFP48 and LQFP64 packages, the OSC_IN/OSC_Out pins are mapped on pins 5,6 whereas in the VFQFPN36 package they are mapped on pins 2,3. However the PD0 and PD1 functionality can be remapped by software on these pins. There are two possible configurations:
Hardware configuration: Connect the OSC_IN/OSC_Out pins to ground through a 10K pull down resistors.
Software configuration: First, the OSC_IN/OSC_Out pins are left not connected on PCB layout. Then, remap the PD0 and PD1 functionality by software on these pins and configure the PD0/PD1 to Output push-pull forced to 0 logic level(Data Register = 0). This will maintain those I/Os to a fixed level minimizing Noise and external stress on these pins.
The software configuration is recommended to reduce the power consumption and saves cost by avoiding the use of external pull down resistors as the I/O is already connected to the ground internally. Whereas the hardware configuration is recommended to increase the EMC performance.
发表于 2009/3/28
1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
2)对于少于100脚的产品,有2种接法:
2.1)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。
2.2)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面2.1)节省2个外部电阻。
以下是在ST英文网站FAQ上抄下的详细解释:
1) In 100 and 144 packages, the OSC_IN /OSC_Out pins are a dedicated pins for HSE and mapped respectively on pins 12, 13 and pins 23, 24 for LQFP packages. Although, for BGA 100 and BGA 144 packages, they are mapped respectively on pins C1,D1 and pins D1,E1. In this case the recommended configuration is:
OSC_In pin must be connected to ground as it is always an input pin
OSC_Out must be left not connected as it is always an output pin.
2) In LQFP48 and LQFP64 packages, the OSC_IN/OSC_Out pins are mapped on pins 5,6 whereas in the VFQFPN36 package they are mapped on pins 2,3. However the PD0 and PD1 functionality can be remapped by software on these pins. There are two possible configurations:
Hardware configuration: Connect the OSC_IN/OSC_Out pins to ground through a 10K pull down resistors.
Software configuration: First, the OSC_IN/OSC_Out pins are left not connected on PCB layout. Then, remap the PD0 and PD1 functionality by software on these pins and configure the PD0/PD1 to Output push-pull forced to 0 logic level(Data Register = 0). This will maintain those I/Os to a fixed level minimizing Noise and external stress on these pins.
The software configuration is recommended to reduce the power consumption and saves cost by avoiding the use of external pull down resistors as the I/O is already connected to the ground internally. Whereas the hardware configuration is recommended to increase the EMC performance.
发表于 2009/3/28
- 嵌入式TCP振荡器(10-15)
- 622.08MHz 低噪声压控晶振的研制(01-21)
- 一种20M低相位噪声晶体振荡器的设计(05-20)
- 锂离子电池管理芯片的研究及其低功耗设计 — 锂离子电池管理芯片的电路实现 (二)(02-18)
- MSP430单片机的时钟系统(02-18)
- 用FPGA避免微处理器过时(03-26)