只谈核数没意义 带你重新认识手机SoC
时间:10-10
来源:互联网
点击:
DSP:处理数据的专家
为什么有些手机摄像头用起来反应迟钝,有些手机的摄像头却快如闪电?除了软件优化的功力,手机摄像头背后还站着一名功臣——DSP。
DSP是另一个关键的处理组件,它的性质与GPU有些类似:专门处理那些超大规模、并行的数据,最典型的两个例子就是:手机摄像头所拍摄的图像,以及手机播放器里五花八门的音效。
可不要小看了这两个看似简单的任务,现在手机搭载的摄像头像素都高得吓人,连拍速度动则10fps、20fps,如果没有DSP,短时间内大量的图像数据足以把一个四核CPU塞满,让你的手机完全干不了其它事情。
根据公开的数据,目前市面上性能最强的手机DSP来自高通即将发布的骁龙810处理器,它搭载的Hexagon DSP拥有14位双图像信号处理器,像素吞吐量高达1.2GPixels/s——每秒钟12亿像素!通过这个数字,你可以感受一下流经DSP的数据量有多恐怖。
正是因为有了专门的DSP,我们才能在手机摄像头上享受越来越高的像素、零快门延迟、面部检测以及高级后处理(如对象移除和克隆)等功能。与 CPU、GPU的不同之处在于,DSP的任务更加专注、单一。DSP没办法胜任CPU、GPU的全部任务,但在它自己擅长的图像、音效处理中,它运行时的 功耗要比CPU和GPU低得多,所以我们把DSP称作“数据处理专家”。
基带/射频前端:手机的耳朵和嘴巴
进入3G/4G时代之后,只要连上移动网络,似乎任何一台手机都能毫无压力下载大量图片、观看高清视频,但在2G时代,事情可没这么简单。你能这么 轻松的刷微博、刷朋友圈、在线购物.。.完全是手机基带芯片和射频前端进化的功劳。如果把手机比作人体,集成手机SoC里面的基带芯片,加上外置的射频前 端,就是人的耳朵和嘴巴,它们负责手机与外界的通讯。
基带芯片又称Baseband,它最主要的功能就是调制收发信号。具体地说,在你给人打电话时,基带芯片把你的声音信号编译成用来发射的基带码,传 输给基站;而在其他人向你打电话时,基带芯片把收到的基带码解译为音频信号,然后通过扬声器发出来。到了3G/4G时代,基带芯片还要负责大量网页、图像 和视频信息的编译——对于基带芯片来说,这些东西最终都会变成信号。
由于调制信号的过程实在是太过复杂,基带芯片内部俨然是一个自己的小王国,它有自己的CPU、自己的信道编码器、自己的DSP、自己的调制解调器和接口模块.。.好一点的基带,例如高通的Gobi,还内置了自己独占的256MB内存。
与基带芯片搭配工作的模块叫做射频前端(RF),它负责信号的数字/模拟转换工作,同时还要负责信号的放大。基带芯片和射频前端一起工作,共同决定了手机的通讯制式。你的手机是3G还是4G?能兼容联通、移动还是电信的网络?这些都是由基带芯片+射频前端说了算的。
除了支持众多通讯制式,优秀的基带芯片还必须能具备把不同频段“揉合”到一起的能力,因为不同运营商的频谱资源实在太分散了。例如,中国移动的4G 网络总共拥有130MHz的频谱资源,频段却分散成了三个,分别是:1880-1900MHz、2320-2370MHz、2575-2635MHz。在 手机工作的时候,通讯模块得把这三个不同的频段整合到一起,模拟成“一个频段”进行通讯,这样才能保证最快速度,我们把这种功能称为“载波聚合”。打个形 象的比方,载波聚合技术相当于一个阀门,把很多根分散的小水管凑到一起,最终形成一股充沛的大水流。
另外,新一代手机还流行一个趋势:把一切与信号相关的部分都交给基带芯片来管理。例如GPU信号、WiFi信号、蓝牙信号.。.在以前,手机每添加这样一个连接功能,就需要多装一块芯片。现在它们都交给基带来管,就能节约不少成本,耗电也会大大降低。
由于功能超多,复杂度超高,基带芯片也被称为“手机上设计最艰难的地带”。高通公司的王牌组合——Gobi基带芯片 + RF360射频前端就是业界标杆,它功能多得像超人:最顶配的Gobi可以支持GSM/WCDMA/CDMA/TDD-LTE/FDD-LTE等从2G到 4G的全部网络制式;兼容全球运营商多达数十个不同的频段;能通过载波聚合技术把分散的频段整合到一起工作;还能收发WiFi/蓝牙/GPS/FM收音机 等种类繁多的信号;为了省电,每一个模块都是可以单独开关的..。.同时,最不可思议的是,功能如此强大的基带芯片,居然也能用硅半导体工艺制造,作为一 个模块集成到SoC内部!这其实也是高通公司在业内的一大技术优势。
如何判断一款手机SoC中基带芯片的技术水平?你完全不用强迫自己记住那些晦涩的技术名词,只要看它的功能就够了——支持多少种4G制式?兼容多少网络频段?支不支持WiFi 802.11ac?利用排除法一一筛选,你会发现最终的选择所剩无几。
为什么有些手机摄像头用起来反应迟钝,有些手机的摄像头却快如闪电?除了软件优化的功力,手机摄像头背后还站着一名功臣——DSP。
DSP是另一个关键的处理组件,它的性质与GPU有些类似:专门处理那些超大规模、并行的数据,最典型的两个例子就是:手机摄像头所拍摄的图像,以及手机播放器里五花八门的音效。
可不要小看了这两个看似简单的任务,现在手机搭载的摄像头像素都高得吓人,连拍速度动则10fps、20fps,如果没有DSP,短时间内大量的图像数据足以把一个四核CPU塞满,让你的手机完全干不了其它事情。
根据公开的数据,目前市面上性能最强的手机DSP来自高通即将发布的骁龙810处理器,它搭载的Hexagon DSP拥有14位双图像信号处理器,像素吞吐量高达1.2GPixels/s——每秒钟12亿像素!通过这个数字,你可以感受一下流经DSP的数据量有多恐怖。
正是因为有了专门的DSP,我们才能在手机摄像头上享受越来越高的像素、零快门延迟、面部检测以及高级后处理(如对象移除和克隆)等功能。与 CPU、GPU的不同之处在于,DSP的任务更加专注、单一。DSP没办法胜任CPU、GPU的全部任务,但在它自己擅长的图像、音效处理中,它运行时的 功耗要比CPU和GPU低得多,所以我们把DSP称作“数据处理专家”。
基带/射频前端:手机的耳朵和嘴巴
进入3G/4G时代之后,只要连上移动网络,似乎任何一台手机都能毫无压力下载大量图片、观看高清视频,但在2G时代,事情可没这么简单。你能这么 轻松的刷微博、刷朋友圈、在线购物.。.完全是手机基带芯片和射频前端进化的功劳。如果把手机比作人体,集成手机SoC里面的基带芯片,加上外置的射频前 端,就是人的耳朵和嘴巴,它们负责手机与外界的通讯。
基带芯片又称Baseband,它最主要的功能就是调制收发信号。具体地说,在你给人打电话时,基带芯片把你的声音信号编译成用来发射的基带码,传 输给基站;而在其他人向你打电话时,基带芯片把收到的基带码解译为音频信号,然后通过扬声器发出来。到了3G/4G时代,基带芯片还要负责大量网页、图像 和视频信息的编译——对于基带芯片来说,这些东西最终都会变成信号。
由于调制信号的过程实在是太过复杂,基带芯片内部俨然是一个自己的小王国,它有自己的CPU、自己的信道编码器、自己的DSP、自己的调制解调器和接口模块.。.好一点的基带,例如高通的Gobi,还内置了自己独占的256MB内存。
与基带芯片搭配工作的模块叫做射频前端(RF),它负责信号的数字/模拟转换工作,同时还要负责信号的放大。基带芯片和射频前端一起工作,共同决定了手机的通讯制式。你的手机是3G还是4G?能兼容联通、移动还是电信的网络?这些都是由基带芯片+射频前端说了算的。
除了支持众多通讯制式,优秀的基带芯片还必须能具备把不同频段“揉合”到一起的能力,因为不同运营商的频谱资源实在太分散了。例如,中国移动的4G 网络总共拥有130MHz的频谱资源,频段却分散成了三个,分别是:1880-1900MHz、2320-2370MHz、2575-2635MHz。在 手机工作的时候,通讯模块得把这三个不同的频段整合到一起,模拟成“一个频段”进行通讯,这样才能保证最快速度,我们把这种功能称为“载波聚合”。打个形 象的比方,载波聚合技术相当于一个阀门,把很多根分散的小水管凑到一起,最终形成一股充沛的大水流。
另外,新一代手机还流行一个趋势:把一切与信号相关的部分都交给基带芯片来管理。例如GPU信号、WiFi信号、蓝牙信号.。.在以前,手机每添加这样一个连接功能,就需要多装一块芯片。现在它们都交给基带来管,就能节约不少成本,耗电也会大大降低。
由于功能超多,复杂度超高,基带芯片也被称为“手机上设计最艰难的地带”。高通公司的王牌组合——Gobi基带芯片 + RF360射频前端就是业界标杆,它功能多得像超人:最顶配的Gobi可以支持GSM/WCDMA/CDMA/TDD-LTE/FDD-LTE等从2G到 4G的全部网络制式;兼容全球运营商多达数十个不同的频段;能通过载波聚合技术把分散的频段整合到一起工作;还能收发WiFi/蓝牙/GPS/FM收音机 等种类繁多的信号;为了省电,每一个模块都是可以单独开关的..。.同时,最不可思议的是,功能如此强大的基带芯片,居然也能用硅半导体工艺制造,作为一 个模块集成到SoC内部!这其实也是高通公司在业内的一大技术优势。
如何判断一款手机SoC中基带芯片的技术水平?你完全不用强迫自己记住那些晦涩的技术名词,只要看它的功能就够了——支持多少种4G制式?兼容多少网络频段?支不支持WiFi 802.11ac?利用排除法一一筛选,你会发现最终的选择所剩无几。
DSP SoC 集成电路 ARM Cortex 电压 射频 编码器 蓝牙 LTE GPS 半导体 传感器 电源管理 电路 相关文章:
- 全面解读 嵌入式DSP上的视频编解码(08-19)
- 基于ADSP-TS201S的图像采集处理系统(08-12)
- 基于Blackfin533的H.264编码(08-18)
- 图形液晶显示模块在嵌入式系统中的应用(09-02)
- 基于DSP和FPGA的电视观瞄系统设计(09-02)
- TI手提多媒体设备解决方案(09-23)
閻忓繐瀚伴。鑸电▔閹捐尙鐟归柛鈺冾攰椤斿嫰寮▎鎴旀煠闁规亽鍔忓畷锟�
- 濡ゅ倹岣挎鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
闁稿繈鍔嶉弻鐔告媴瀹ュ拋鍔呭☉鏃傚Т閻ㄧ姵锛愰幋婊呯懇濞戞挻姘ㄩ悡锛勬嫚閸☆厾绀夐柟缁樺姇瀹曞矂鎯嶉弬鍨岛鐎规悶鍎扮紞鏃堟嚄閽樺顫旈柨娑樿嫰婵亪骞冮妸銉﹀渐闂侇偆鍠愰崹姘舵⒐婢舵瓕绀嬪ù鍏坚缚椤懘鎯冮崟顐ゆ濡増鍨垫导鎰矙鐎n亞鐟�...
- 濞戞搩鍘炬鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
缂侇噣绠栭埀顒婃嫹30濠㈣埖宀稿Λ顒備焊閸曨垼鏆ラ柛鈺冾攰椤斿嫮鎷犻崜褉鏌ら柨娑樺缁楁挾鈧鍩栧璺ㄦ嫚閹惧懐绀夐柛鏂烘櫅椤掔喖宕ㄥΟ鐑樺渐闂侇偆鍠曢幓顏堝礆妫颁胶顏卞☉鎿冧簻閹酣寮介悡搴f濡増鍨垫导鎰矙鐎n亞鐟庨柣銊ュ椤╋箑效閿燂拷...
- Agilent ADS 闁轰焦鐟ラ鐔煎春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
濞戞挻鎸搁宥夊箳閸綆鍤﹂柨娑樿嫰閸欏繘妫冮姀锝庡敼閻熸瑯鏋僁S闁告艾瀚~鎺楀礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁遍亶宕濋埡鍌氫憾闁烩偓鍔嶅〒鍫曟儗椤撶姵鐣遍柡鍐ㄧ埣濡法鈧冻缂氱槐鐧咲S...
- HFSS閻庢冻缂氱弧鍕春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
閻犙冨缁讳焦绋夐幘鎰佸晙闁瑰搫鐗愰鎶芥晬鐏炶棄寮块梻鍫涘灱椤斿骞掗崷娆禨S闁汇劌瀚慨娑㈡嚄閽樺瀚查幖瀛樻⒒閺併倝鏁嶇仦钘夌盎闁告柡鏅滈崑宥夊礂閵娾晜妗ㄧ紒顖濆吹缁椽宕烽弶娆惧妳濞戞梻濮电敮澶愬箵椤″锭SS...
- CST鐎甸偊鍠楃亸婵嗩啅閵夈倗绋婇悗骞垮€曢悡璺ㄦ媼椤撶喐娈岀紒瀣儏椤ㄦ粎鎲楅敓锟�
闁哄瀛╁Σ鎴澝虹€b晛鐦滈悹浣筋嚋缁辨繈宕楅妸鈺傛〃閻犱礁寮跺绶維T闁告艾瀚伴妴宥夊礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁辨繈宕濋埡鍌氫憾闊浂鍋婇埀顒傚枙閸ゆ粎鈧冻闄勭敮澶愬箵椤″T閻犱焦宕橀鍛婃償閺冨倹鏆�...
- 閻忓繐瀚伴。鍫曞春閾忚鏀ㄩ柛鈺冾攰椤斿嫮鎷犻崜褉鏌�
濞戞挸娲g粭鈧Δ鍌浬戦妶濂哥嵁閸愬弶鍕鹃悹褍鍤栫槐婵囨交濞嗗海鏄傞悹鍥у⒔閳诲吋绋夋潪鎵☉闁革负鍔岄惃鐘筹紣閹寸偛螚闁哄牜鍨堕。顐﹀春閻旀灚浜i悘鐐存礃鐎氱敻鎳樺鍓х闁瑰灚鎸风粭鍛村锤濮橆剛鏉介柣銊ュ缁楁挻绋夊顒傚敤缁绢厸鍋�...
- 鐎甸偊鍠楃亸婵堜焊閸曨垼鏆ユ繛鏉戭儔閸f椽骞欏鍕▕闁糕晝顢婇鍕嫚閸撗€鏌ら柛姘墦濞夛拷
閻犳劦鍘洪幏閬嶅触閸儲鑲犻柡鍥ㄦ綑閻ゅ嫰骞嗛悪鍛缂傚啯鍨甸崹搴ㄥΥ娓氣偓椤e墎鎷崣妯哄磿闁靛棔鑳堕妵姘枖閵忕姵鐝ら柕鍡曟娣囧﹪宕i柨瀣埍闁挎稑鏈崹婊呮啺娴e湱澹夐柡宥夘棑缁ㄥ潡鏌呴敓锟�...
栏目分类