TFT-OLED像素单元及驱动电路分析
时间:06-10
来源:互联网
点击:
图3所示是三管TFT电流控制型电路,它工作于控制和保持两个阶段。控制阶段,扫描线处于高电平,T2和T3开启,T1漏极施加低电平,OLED反向偏置,输入数据电流流经T2,T1,T1的栅源电压存储于Cs中。保持阶段,扫描线处于低电平,T2和T3关断,同时T1漏极施加高电平,电流流经T1与OLED,T1的栅源电压维持T1电流不变。电路能有效补偿阈值电压的变化,工作700小时,电流衰减11%,这可以通过减小TFT的交叠电容加以改善。
图3 电流控制型3-TFT像素电路
国外较早见报道的4-TFT电流控制带阈值电压补偿的驱动电路如图4。在寻址阶段,扫描电压开启T1、T3,数据电流Idata流过T4进入发光单元,T4的栅源电压保存在Cs中;寻址结束,T1和T3关闭,VG的引入能使T2打开,这时T4连到VDD上作为电流源,它只受保存在Cs中的电压控制,这就消除了阈值电压变化的影响,然而VG线的引入影响了显示器的开口率。
图4 电流控制带阈值电压补偿的模拟驱动电路
图5 电流控制电流镜像素电路
获得广泛应用的是以电流镜像为基础的电流控制型像素单元电路,下面以图5所示结构阐述这类电路的工作原理。当扫描线上电压处于高电平时,此像素被选中,晶体管T1、T2导通,Idata首先从数据线通过T1管对电容Cs充电。当电容Cs两端电压达到一定值时,整个Idata通过T2管流到T3管。同时,由于T3管和T4管的栅极电压相等,数据电流Idata被镜像为流经OLED的电流。当此像素未被选中时,T4管的栅极电压由电容Cs两端所存储的电压所决定,维持着电流驱动OLED。研究发现开关管T2的老化,T3、T4阈值电压VT的漂移差别,T3、T4的阈值电压VT初始值不同是影响以电流镜为基础a-Si:H电路的驱动电流稳定性的主要机制。因此,电流镜准确实现电流跟随功能的基本要求是T2尽可能开态低阻,关态低漏电流;T3、T4的初始阈值电压相等,且变化一致;T3、T4工作于饱和区。而郭斌等人模拟和分析了作为电流控制型多晶硅薄膜晶体管(poly-SiTFT)有源矩阵有机发光二极管(AM-LOED)像素单元的poly-SiTFT/OLED耦合对的J-V特性和poly-SiTFT电流镜的I-V特性。结果表明,poly-SiTFT/OLED耦合对的驱动电压低,在200A/m2下不超过8V;而TFT电流镜的跟随能力很好,在0.0~2.5μA时饱和电压只有1.5~2.5V。一般说来,以电流镜像为基础的电路具有良好的补偿特性,类似于此类型的电流控制型驱动电路也能很好地证明这一点,并从实验得出,这种电路具有很好的线性输出,能对显示的灰度作精确性地调节。
四管电流驱动型电路缺陷在于低亮度显示时,充电时间长,信号延时严重。目前,主要通过调节OLED的电流与输入数据电流的缩减比例,来减小数据线与像素间的充电时间。已见报道的有两类方法,一是基于TFT几何尺寸,一是基于存储电容尺寸。分压式电流控制型驱动电路属于前者,电路中流经OLED的电流与数据电流的关系为:
这里μ为场效应迁移率,Cox为单位面积的绝缘层电容;W和L分别为MOS管沟道宽度和长度。由以上关系可知,采用大数据电流充电,能得到小的IOLED,同时减少了充电时间,但这是以增加功耗为代价的。而串联存储电容结构的电流控制型电路属于后者,选通阶段,Idata=IOLED,非选通阶段,电路中流经OLED的电流与数据电流的关系为Idata=RSCALEIOLED,其中RSCALE为电流缩减比率,它与存储电容CST2、开关管栅源/栅漏等效交迭电容COV-T2、扫描信号在选通与非选通时幅度的变化△VSCAN相关,且随着以上参数的增大,RSCALE随之增大。与前者相比,该电路优势在于通过RSCALE与IOLED适当组合,不仅可以更大程度地减小响应时间,而且在不增加功耗的前提下,能满足高、低不同灰度级的显示需要。
2.2.3 五管TFT结构
B.Mazhari等人提出了五管单元像素电路,该电路采用一个栅源短接的TFT作为负反馈电阻,有效抑制多晶硅TFT扭结效应(kinkeffect),实现了数据电流高达20A,输出特性曲线仍具有良好的线性,克服了以前各种电路在保证线性的前提下电流范围小的缺陷。爱普生-剑桥实验室提出了先进的自调整电压源技术,这也是一种五管驱动方案,电路通过单位增益放大器存储驱动管TFT的源电压,保证选通与非选通阶段驱动管偏置条件一致。
尽管电流范围限制在0.2A~1A,还是有效改善了数据电流较小时阈值电压的变化对OLED电流影响较大的缺点,但电路结构复杂,限制了像素的占空因数。
3 驱动系统
一个完整的有源矩阵OLED驱动显示系统,除了由像素单元电路构成的矩阵显示屏外,还包括驱动IC(行、列控制/驱动电路)、单片机控制电路等,OLED有源驱动系统典型框图如图6。
LED 显示器 电路 OLED 电容 电压 电流 放大器 运算放大器 仿真 二极管 电阻 单片机 MCU 51单片机 相关文章:
- OLED显示器及其馈电技术(08-13)
- 基于S3C44B0X的大型LED显示系统设计(08-14)
- 利用EL7516制作高效、高电流的白光LED驱动器(08-14)
- OLED显示模块与C8051F单片机的接口设计(08-14)
- 白光型发光二极管(WLED)之背光设计兵法(08-26)
- LCD和OLED在车载显示的应用 (08-26)