PXI在虚拟仪器的应用
时间:08-31
来源:互联网
点击:
3.3、虚拟仪器的软件系统
虚拟仪器技术最核心的思想,就是利用计算机的硬/软件资源,使本来需要硬件实现的技术软件化(虚拟化),以便最大限度地降低系统成本,增强系统的功能与灵活性。基于软件在VI系统中的重要作用,NI提出了"软件就是仪器(The software is the instrument)"的口号。VPP系统联盟提出了系统框架、驱动程序、VISA、软面板、部件知识库等一系列VPP软件标准,推动了软件标准化的进程。
虚拟仪器的软件框架从低层到顶层,包括三部分:VISA库、仪器驱动程序、应用软件。
VISA(Virtual Instrumentation software Architecture)虚拟仪器软件体系结构,实质就是标准的I/O函数库及其相关规范的总称。一般称这个I/O函数库为VISA库。它驻留于计算机系统之中执行仪器总线的特殊功能,是计算机与仪器之间的软件层连接,以实现对仪器的程控。它对于仪器驱动程序开发者来说是一个个可调用的操作函数集。
仪器驱动程序是完成对某一特定仪器控制与通信的软件程序集。它是应用程序实现仪器控制的桥梁。每个仪器模块都有自己的仪器驱动程序,仪器厂商以源码的形式提供给用户。
应用软件建立在仪器驱动程序之上,直接面对操作用户,通过提供直观友好的测控操作界面、丰富的数据分析与处理功能,来完成自动测试任务。
虚拟仪器应用软件的编写,大致可分为两种方式:
①用通用编程软件进行编写。主要有Microsoft公司的Visual Basic与Visual C++、Borland公司的Delphi、Sybase公司的PowerBuilder;
②用专业图形化编程软件进行开发。如HP公司的VEE,NI公司的LabVIEW 和Lab windows/CVI等。
应用软件还包括通用数字处理软件。通用数字处理软件包括用于数字信号处理的各种功能函数,如频域分析的功率谱估计、FFT、FHT、逆FFT、逆FHT和细化分析等;时域分析的相关分析、卷积运算、反卷运算、均方根估计、差分积分运算和排序等。以及数字滤波等等。这些功能函数为用户进一步扩展虚拟仪器的功能提供了基础。
4、LabVIEW简介
80年代早期,计算机接口变得越来越精细,界面也越来越友好,NI的工程师们意识到:需要一种强大的软件接口让用户通过他们的计算机获得更简单有效的测试与控制。苹果公司的Macintosh为这种即将诞生的图形化软件语言提供了一个最好的环境:G语言。不久,NI为基于计算机的测量和自动化开发出了一个软件包:LabVIEW。
LabVIEW是基于G语言的革命性的图形化开发语言,用来进行数据采集和控制、数据分析和数据表达。它的目标是简化程序的开发工作,让工程师和科学家能充分利用PC机的功能,快速简便地完成自己的工作。十余年的不断充实,使LabVIEW成为丰富、强大的实用工具软件包。与LabVIEW同步推出的还有LabWindows/CVI,它的特点是可利用ANSI C编程语言建立与实用仪器的交互式开发环境。这两者内部都配有GPIB、VXI、串口和插入式DAQ板的库函数,以及全球几百家厂商的仪器驱动程序。围绕这些核心软件还陆续开发出多种附件。
LabVIEW的诞生标志着NI进入了专门从事VI(虚拟仪器)的时期。
5、PCI、PXI、VXI的比较
基于PCI总线、基于PXI总线、基于VXI总线虚拟仪器测试系统由于总线的不同而具有各自的特点与应用范围。
与传统仪器组建的测试系统相比,基于PCI总线的虚拟仪器测试系统在性能、灵活性、易用性和低价格等方面具有绝对优势。其仪器硬件为插卡式,具有与计算机插卡相同的尺寸,将硬件插卡直接插入计算机中的PCI槽上即可构成测试系统,充分利用计算机的资源来实现数据采集及处理、故障分析诊断和过程控制等智能测控。与基于其它总线的虚拟仪器测试系统相比,价格低廉的特点使其在工业、军工、教育和科研领域得到了广泛得以应用。缺点在于基于PCI总线的虚拟仪器测试系统缺乏触发线标准化及其所处的计算机环境,这一环境不能满足大功率,高质量冷却,仔细考虑RFI/EMI屏蔽的复杂而精密的测试任务的要求。插卡的连线也可能因所用的计算机型号的限制而生产困难。插槽数十分有限,难以容纳大量的通道。
基于PXI总线的虚拟仪器测试系统由于PXI总线产品对PCI总线产品的完全兼容,这样在许多领域,他们与基于PCI总线的虚拟仪器测试系统可以互相代替,而具有性能超过前者,只是价格稍高一些。用户如果想在现有的基于PCI总线的虚拟仪器测试系统转向基于PXI总线的虚拟仪器测试系统,只需对硬件投资,原有的软件可不加任何修改而运行在PXI系统上。同时由于PXI总线对机箱内部器件工作环境做了严格的规定以及PXI系统拥有比台式机设计更多的扩展槽,致使PXI系统可以在恶劣工作环境下正常工作,从而可以适应各种各样更大复杂的测试领域。由于PXI总线是PCI总线基础上借鉴VXI总线的仪器特性组合而成,PXI系统在价格上和性能上介于PCI系统和VXI系统之间。
VXI总线从1987年诞生至今虽然历史不长,但VXI总线产品从无到有、从小到大,已形成规模生产,特别是从90年代开始,VXI总线的产品发展呈指数上升趋势。VXI总线模板本身不带电源,没有面板,按键,旋钮和显示器,电参数的设定及测量结果显示必须通过软件面板来实现,是很好的虚拟仪器系统平台,将VXI总线这项技术与计算机网络技术相结合,利用现有的互联网资源,可实现交互式网页基础上组建远程通信及测试网络。VXI总线的系统结构为虚拟仪器开发提供了更为理想的环境,基于VXI总线虚拟仪器测试系统将会成为二十一世纪程控测试系统的主流。目前由于价格昂贵,它主要应用在尖端测试领域,据数据资料表明,VXI系统用户72%来源于通讯业和军工业。
不同的测试任务对测试系统有不同的要求,一种虚拟仪器测试系统不可能涵盖整个社会对测量的要求。对虚拟仪器测试系统的发展应该有一个客观的认识。基于PCI总线的虚拟仪器测试系统通常适用于低频低速的过程测控系统、教学实验和实验室常规测试。基于PXI总线的虚拟仪器测试系统由于电磁兼容性能及冷却性能的改善和模块式结构可用在一般要求的自动测试系统场合和系统总价格有所限制的自动测试系统。基于VXI虚拟仪器测试系统具有良好的性能,可用于自动措施系统是特别是高速大数据量自动测试系统,宽频带自动测试系统和军用自动化测量,代表着二十一世纪测试技术的发展方向。
虚拟仪器技术最核心的思想,就是利用计算机的硬/软件资源,使本来需要硬件实现的技术软件化(虚拟化),以便最大限度地降低系统成本,增强系统的功能与灵活性。基于软件在VI系统中的重要作用,NI提出了"软件就是仪器(The software is the instrument)"的口号。VPP系统联盟提出了系统框架、驱动程序、VISA、软面板、部件知识库等一系列VPP软件标准,推动了软件标准化的进程。
虚拟仪器的软件框架从低层到顶层,包括三部分:VISA库、仪器驱动程序、应用软件。
VISA(Virtual Instrumentation software Architecture)虚拟仪器软件体系结构,实质就是标准的I/O函数库及其相关规范的总称。一般称这个I/O函数库为VISA库。它驻留于计算机系统之中执行仪器总线的特殊功能,是计算机与仪器之间的软件层连接,以实现对仪器的程控。它对于仪器驱动程序开发者来说是一个个可调用的操作函数集。
仪器驱动程序是完成对某一特定仪器控制与通信的软件程序集。它是应用程序实现仪器控制的桥梁。每个仪器模块都有自己的仪器驱动程序,仪器厂商以源码的形式提供给用户。
应用软件建立在仪器驱动程序之上,直接面对操作用户,通过提供直观友好的测控操作界面、丰富的数据分析与处理功能,来完成自动测试任务。
虚拟仪器应用软件的编写,大致可分为两种方式:
①用通用编程软件进行编写。主要有Microsoft公司的Visual Basic与Visual C++、Borland公司的Delphi、Sybase公司的PowerBuilder;
②用专业图形化编程软件进行开发。如HP公司的VEE,NI公司的LabVIEW 和Lab windows/CVI等。
应用软件还包括通用数字处理软件。通用数字处理软件包括用于数字信号处理的各种功能函数,如频域分析的功率谱估计、FFT、FHT、逆FFT、逆FHT和细化分析等;时域分析的相关分析、卷积运算、反卷运算、均方根估计、差分积分运算和排序等。以及数字滤波等等。这些功能函数为用户进一步扩展虚拟仪器的功能提供了基础。
4、LabVIEW简介
80年代早期,计算机接口变得越来越精细,界面也越来越友好,NI的工程师们意识到:需要一种强大的软件接口让用户通过他们的计算机获得更简单有效的测试与控制。苹果公司的Macintosh为这种即将诞生的图形化软件语言提供了一个最好的环境:G语言。不久,NI为基于计算机的测量和自动化开发出了一个软件包:LabVIEW。
LabVIEW是基于G语言的革命性的图形化开发语言,用来进行数据采集和控制、数据分析和数据表达。它的目标是简化程序的开发工作,让工程师和科学家能充分利用PC机的功能,快速简便地完成自己的工作。十余年的不断充实,使LabVIEW成为丰富、强大的实用工具软件包。与LabVIEW同步推出的还有LabWindows/CVI,它的特点是可利用ANSI C编程语言建立与实用仪器的交互式开发环境。这两者内部都配有GPIB、VXI、串口和插入式DAQ板的库函数,以及全球几百家厂商的仪器驱动程序。围绕这些核心软件还陆续开发出多种附件。
LabVIEW的诞生标志着NI进入了专门从事VI(虚拟仪器)的时期。
5、PCI、PXI、VXI的比较
基于PCI总线、基于PXI总线、基于VXI总线虚拟仪器测试系统由于总线的不同而具有各自的特点与应用范围。
与传统仪器组建的测试系统相比,基于PCI总线的虚拟仪器测试系统在性能、灵活性、易用性和低价格等方面具有绝对优势。其仪器硬件为插卡式,具有与计算机插卡相同的尺寸,将硬件插卡直接插入计算机中的PCI槽上即可构成测试系统,充分利用计算机的资源来实现数据采集及处理、故障分析诊断和过程控制等智能测控。与基于其它总线的虚拟仪器测试系统相比,价格低廉的特点使其在工业、军工、教育和科研领域得到了广泛得以应用。缺点在于基于PCI总线的虚拟仪器测试系统缺乏触发线标准化及其所处的计算机环境,这一环境不能满足大功率,高质量冷却,仔细考虑RFI/EMI屏蔽的复杂而精密的测试任务的要求。插卡的连线也可能因所用的计算机型号的限制而生产困难。插槽数十分有限,难以容纳大量的通道。
基于PXI总线的虚拟仪器测试系统由于PXI总线产品对PCI总线产品的完全兼容,这样在许多领域,他们与基于PCI总线的虚拟仪器测试系统可以互相代替,而具有性能超过前者,只是价格稍高一些。用户如果想在现有的基于PCI总线的虚拟仪器测试系统转向基于PXI总线的虚拟仪器测试系统,只需对硬件投资,原有的软件可不加任何修改而运行在PXI系统上。同时由于PXI总线对机箱内部器件工作环境做了严格的规定以及PXI系统拥有比台式机设计更多的扩展槽,致使PXI系统可以在恶劣工作环境下正常工作,从而可以适应各种各样更大复杂的测试领域。由于PXI总线是PCI总线基础上借鉴VXI总线的仪器特性组合而成,PXI系统在价格上和性能上介于PCI系统和VXI系统之间。
VXI总线从1987年诞生至今虽然历史不长,但VXI总线产品从无到有、从小到大,已形成规模生产,特别是从90年代开始,VXI总线的产品发展呈指数上升趋势。VXI总线模板本身不带电源,没有面板,按键,旋钮和显示器,电参数的设定及测量结果显示必须通过软件面板来实现,是很好的虚拟仪器系统平台,将VXI总线这项技术与计算机网络技术相结合,利用现有的互联网资源,可实现交互式网页基础上组建远程通信及测试网络。VXI总线的系统结构为虚拟仪器开发提供了更为理想的环境,基于VXI总线虚拟仪器测试系统将会成为二十一世纪程控测试系统的主流。目前由于价格昂贵,它主要应用在尖端测试领域,据数据资料表明,VXI系统用户72%来源于通讯业和军工业。
不同的测试任务对测试系统有不同的要求,一种虚拟仪器测试系统不可能涵盖整个社会对测量的要求。对虚拟仪器测试系统的发展应该有一个客观的认识。基于PCI总线的虚拟仪器测试系统通常适用于低频低速的过程测控系统、教学实验和实验室常规测试。基于PXI总线的虚拟仪器测试系统由于电磁兼容性能及冷却性能的改善和模块式结构可用在一般要求的自动测试系统场合和系统总价格有所限制的自动测试系统。基于VXI虚拟仪器测试系统具有良好的性能,可用于自动措施系统是特别是高速大数据量自动测试系统,宽频带自动测试系统和军用自动化测量,代表着二十一世纪测试技术的发展方向。
PXI 电子 虚拟仪器 万用表 电压 显示器 总线 嵌入式 示波器 LabVIEW 自动化 相关文章:
- 基于虚拟仪器技术的短波电台自动测试系统(10-23)
- ATE开放式体系结构的硬件基础(10-30)
- 基于PXI的便携式测控系统(10-30)
- LXI 1.0 规范简介(02-27)
- 建立使用PXI、VXI和LXI的混合型测试系统(02-27)
- 关于网络时代的测试新技术(03-16)