基于DDS技术的高频正弦波发生器的设计
时间:08-10
来源:互联网
点击:
摘要:以混合信号单片机 C8051F020及 DDS芯片 AD9834为核心,采用直接数字合成(DDS)技术完成多功能高频正弦信号发生器的设计。该正弦信号发生器可输出可调频稳定正弦信号,频率最高可达 15MHz,频率步进为 100Hz、1KHz、10KHz三级步进,在 50欧姆电阻负载情况下输出电压峰峰值在 2.54V至 10.40V之间;同时可以产生模拟调幅( AM)信号、模拟调频(FM)信号、二进制ASK、PSK、FSK信号。其中:AM信号的调制度可以 10%步进调节,FM信号最大频偏可以在 5 KHz/10KHz之间选择。
1 引言
正弦信号应用极为广泛,通常作为标准信号,用于电子学性能实验及参数测量,故要求正弦波信号发生器输出波形具有较高的精度、稳定度及低失真度。产生正弦信号的方法很多,可以采用函数发生器 MAX038或 ICL8038集成芯片外接分立元件来实现,通过调节外接电容或电阻来设置输出信号频率。但输出信号受外部分立器件参数影响很大,且输出信号频率不能太高,同时无法实现频率步进调节。另外,采用 FPGA+D/A可实现正弦信号发生器的设计,同时可实现频率步进调节,但当输出高频信号时,需要高速D/A来配合工作。
本文采用直接数字合成(DDS)技术,采用专用集成芯片 AD9834作为正弦波产生模块,由 C8051F020作为控制器来完成整个系统的设计。实验结果显示:输出信号频率在 1 KHz 至15 MHz,且无明显失真,输出信号频率实现 100Hz、1KHz、10KHz三级步进调节;在 50欧姆电阻负载情况下,输出电压峰峰值在 2.35V至 10.45V之间;同时可实现模拟调幅信号(AM)、模拟调频信号( FM)、二进制幅移键控信号( ASK)、二进制频移键控信号( FSK)及二进制相移键控信号(PSK)的输出; AM信号的调制度以 10%步进调节; FM信号最大频偏为 5KHz/10KHz可选。
2 系统设计
系统总体框图如图 1所示。系统选取集成混合信号 C8051F020单片机作为主控制器,通过键盘与显示控制芯片 7279来接收功能选择、参数设置等信息,并将输出信号频率等信息实时送往数码管显示。同时,控制器将读取的按键信息转换成控制命令通过串行接口送给 AD9834,由 AD9834产生正弦信号、 ASK、PSK、FSK及 FM信号。而 AM信号的产生则由输出的正弦信号与 1KHz的带偏置正弦信号相乘来实现,通过调节直流分量来调节 AM信号调制度。
2.1 正弦信号发生模块
直接数字合成(DDS)技术具有输出信号精度高、变频速度快、输出信号连续、控制方便及性价比高等诸多优点,因而适用于高频、高精度正弦信号发生器的设计。本系统选取AD9834,其工作原理示意图如图 2所示。它由频率字寄存器、相位字寄存器、相位累加器、加法器、正弦 ROM表及DAC组成。在控制时钟信号作用下,累加器将与输出信号频率对应的频率字进行累加,然后与相位字相加以形成最终相位信息。正弦 ROM表则将相位信息转化为幅值信息,然后由 DAC生成正弦信号 。
输出信号频率精度主要由基准频率精度决定。为增大 AD9834输出信号幅值,采用高频运放 AD811进行信号放大。但考虑到输出信号幅值随频率增大而减小的不足,系统采用数控电位计 X9C102来实现可变增益放大,即依据输出信号频率的不同来改变数控电位计的值,以改变增益[8]。可变增益放大器原理示意图如图 3所示。
图中:R1为数控电位计 X9C102的等效电阻值。
2.2 PSK、FSK、ASK信号的产生
AD9834有两个相位字寄存器 PHASE0、PHASE1,可通过片外引脚 PSELECT或片内控制寄存器相关位来选择 PHASE0或 PHASE1中的值作为输出信号的初始相位字。据此,向 PHASE0和 PHASE1分别写入 0和 π所对应的数值( 000H和 800H),由控制器 C8051F020产生 10kbps的二进制基带序列接到端口 PSELECT上,输出端便可得到二进制 PSK信号。
同样,AD9834有两个频率字寄存器 FREQ0、FREQ1,可通过片外引脚 FSELECT或片内控制寄存器相关位来选择 FREQ0、FREQ1中的值作为输出信号的频率字。向 FREQ0和 FREQ1分别写入两不同频率所对应的数值,并由控制器 C8051F020产生 10kbps的二进制基带序列接到端口 FSELECT上,输出端便可得到二进制 FSK信号。
而 ASK信号的生成方法与 FSK的生成方法类似,唯一不同的是:须将一个频率字寄存器中写入 0Hz所对应的数值。
2.3 模拟调频( FM)信号、模拟调幅( AM)信号的产生
本模块用一个按键实现最大偏频为 5KHz/10KHz二级程控的选择。用 8038产生一个频率为 1kHz、峰峰值为 2V的正弦波作为调制信号,依据按键信息判断是 5K偏频还是 10K偏频,然后单片机 F020的 A/D采集调制信号,利用公式 2把频率转换成数字量写入 AD9834的频率字寄存器中,从而实现模拟调频。
将 8038产生的频率为 1kHz的正弦信号作为调制信号,而控制器 C8051F020的 D/A模块产生直流信号,两信号通过加法电路形成有偏置的正弦调制信号。此信号与 AD9834产生的正弦信号(载波)经乘法器 AD534产生模拟调幅波。通过调节直流信号大小可以改变模拟调幅信号的调制度。
2.4 按键与显示模块
该模块选用键盘显示管理芯片 7279来实现。7279可以自动扫描按键阵列,并将按键信息存储。控制器可以通过串行接口读取按键信息,并可将要显示的信息送入 7279,由 7279自动完成数码管的扫描显示。这种设计既简化硬件连接,又便于软件处理。
2.5 系统软件设计
系统软件设计的总体思想是:控制器读取键盘信息,如果是功能键按下,则根据功能选择执行相应的功能程序段;如果是调节键按下,则暂停信号输出,直至参数设置完毕后,再根据功能选择项输出相应信号。
3 测试结果对本系统最终结果进行了实验测定,结果如表 1所示:
4 结论
本文采用高性能混合信号 C8051F020单片机和 DDS芯片 AD9834实现高频正弦信号发生器的设计,克服了传统方法中输出信号受外界元件参数影响的缺点,同时 AD9834内部集成有高速 A/D,可直接输出正弦信号,避免外接 A/D,简化系统硬件结构,提高了系统稳定性;基于 AD9834频率字及相位字可选的特点,外接部分电路即可产生 AM、FM、ASK、 PSK、FSK等调制信号;AD9834输出正弦信号精度高、稳定性好、输出信号连续、控制方便。将基于上述优点的信号发生器应用于工程实践中,可以提高系统性价比,创造良好的经济效益。同时,基于 DDS技术的信号发生器将获得广泛的应用。
本文作者创新点:利用乘法器将带偏置的正弦调制信号与载波信号相乘以产生 AM信号,通过调节直流分量的大小以调节 AM信号调制度;通过 A/D采集调制信号,依据调制信号幅值信息来改变输出信号频率,从而实现 FM信号的产生。
1 引言
正弦信号应用极为广泛,通常作为标准信号,用于电子学性能实验及参数测量,故要求正弦波信号发生器输出波形具有较高的精度、稳定度及低失真度。产生正弦信号的方法很多,可以采用函数发生器 MAX038或 ICL8038集成芯片外接分立元件来实现,通过调节外接电容或电阻来设置输出信号频率。但输出信号受外部分立器件参数影响很大,且输出信号频率不能太高,同时无法实现频率步进调节。另外,采用 FPGA+D/A可实现正弦信号发生器的设计,同时可实现频率步进调节,但当输出高频信号时,需要高速D/A来配合工作。
本文采用直接数字合成(DDS)技术,采用专用集成芯片 AD9834作为正弦波产生模块,由 C8051F020作为控制器来完成整个系统的设计。实验结果显示:输出信号频率在 1 KHz 至15 MHz,且无明显失真,输出信号频率实现 100Hz、1KHz、10KHz三级步进调节;在 50欧姆电阻负载情况下,输出电压峰峰值在 2.35V至 10.45V之间;同时可实现模拟调幅信号(AM)、模拟调频信号( FM)、二进制幅移键控信号( ASK)、二进制频移键控信号( FSK)及二进制相移键控信号(PSK)的输出; AM信号的调制度以 10%步进调节; FM信号最大频偏为 5KHz/10KHz可选。
2 系统设计
系统总体框图如图 1所示。系统选取集成混合信号 C8051F020单片机作为主控制器,通过键盘与显示控制芯片 7279来接收功能选择、参数设置等信息,并将输出信号频率等信息实时送往数码管显示。同时,控制器将读取的按键信息转换成控制命令通过串行接口送给 AD9834,由 AD9834产生正弦信号、 ASK、PSK、FSK及 FM信号。而 AM信号的产生则由输出的正弦信号与 1KHz的带偏置正弦信号相乘来实现,通过调节直流分量来调节 AM信号调制度。
2.1 正弦信号发生模块
直接数字合成(DDS)技术具有输出信号精度高、变频速度快、输出信号连续、控制方便及性价比高等诸多优点,因而适用于高频、高精度正弦信号发生器的设计。本系统选取AD9834,其工作原理示意图如图 2所示。它由频率字寄存器、相位字寄存器、相位累加器、加法器、正弦 ROM表及DAC组成。在控制时钟信号作用下,累加器将与输出信号频率对应的频率字进行累加,然后与相位字相加以形成最终相位信息。正弦 ROM表则将相位信息转化为幅值信息,然后由 DAC生成正弦信号 。
输出信号频率精度主要由基准频率精度决定。为增大 AD9834输出信号幅值,采用高频运放 AD811进行信号放大。但考虑到输出信号幅值随频率增大而减小的不足,系统采用数控电位计 X9C102来实现可变增益放大,即依据输出信号频率的不同来改变数控电位计的值,以改变增益[8]。可变增益放大器原理示意图如图 3所示。
图中:R1为数控电位计 X9C102的等效电阻值。
2.2 PSK、FSK、ASK信号的产生
AD9834有两个相位字寄存器 PHASE0、PHASE1,可通过片外引脚 PSELECT或片内控制寄存器相关位来选择 PHASE0或 PHASE1中的值作为输出信号的初始相位字。据此,向 PHASE0和 PHASE1分别写入 0和 π所对应的数值( 000H和 800H),由控制器 C8051F020产生 10kbps的二进制基带序列接到端口 PSELECT上,输出端便可得到二进制 PSK信号。
同样,AD9834有两个频率字寄存器 FREQ0、FREQ1,可通过片外引脚 FSELECT或片内控制寄存器相关位来选择 FREQ0、FREQ1中的值作为输出信号的频率字。向 FREQ0和 FREQ1分别写入两不同频率所对应的数值,并由控制器 C8051F020产生 10kbps的二进制基带序列接到端口 FSELECT上,输出端便可得到二进制 FSK信号。
而 ASK信号的生成方法与 FSK的生成方法类似,唯一不同的是:须将一个频率字寄存器中写入 0Hz所对应的数值。
2.3 模拟调频( FM)信号、模拟调幅( AM)信号的产生
本模块用一个按键实现最大偏频为 5KHz/10KHz二级程控的选择。用 8038产生一个频率为 1kHz、峰峰值为 2V的正弦波作为调制信号,依据按键信息判断是 5K偏频还是 10K偏频,然后单片机 F020的 A/D采集调制信号,利用公式 2把频率转换成数字量写入 AD9834的频率字寄存器中,从而实现模拟调频。
将 8038产生的频率为 1kHz的正弦信号作为调制信号,而控制器 C8051F020的 D/A模块产生直流信号,两信号通过加法电路形成有偏置的正弦调制信号。此信号与 AD9834产生的正弦信号(载波)经乘法器 AD534产生模拟调幅波。通过调节直流信号大小可以改变模拟调幅信号的调制度。
2.4 按键与显示模块
该模块选用键盘显示管理芯片 7279来实现。7279可以自动扫描按键阵列,并将按键信息存储。控制器可以通过串行接口读取按键信息,并可将要显示的信息送入 7279,由 7279自动完成数码管的扫描显示。这种设计既简化硬件连接,又便于软件处理。
2.5 系统软件设计
系统软件设计的总体思想是:控制器读取键盘信息,如果是功能键按下,则根据功能选择执行相应的功能程序段;如果是调节键按下,则暂停信号输出,直至参数设置完毕后,再根据功能选择项输出相应信号。
3 测试结果对本系统最终结果进行了实验测定,结果如表 1所示:
4 结论
本文采用高性能混合信号 C8051F020单片机和 DDS芯片 AD9834实现高频正弦信号发生器的设计,克服了传统方法中输出信号受外界元件参数影响的缺点,同时 AD9834内部集成有高速 A/D,可直接输出正弦信号,避免外接 A/D,简化系统硬件结构,提高了系统稳定性;基于 AD9834频率字及相位字可选的特点,外接部分电路即可产生 AM、FM、ASK、 PSK、FSK等调制信号;AD9834输出正弦信号精度高、稳定性好、输出信号连续、控制方便。将基于上述优点的信号发生器应用于工程实践中,可以提高系统性价比,创造良好的经济效益。同时,基于 DDS技术的信号发生器将获得广泛的应用。
本文作者创新点:利用乘法器将带偏置的正弦调制信号与载波信号相乘以产生 AM信号,通过调节直流分量的大小以调节 AM信号调制度;通过 A/D采集调制信号,依据调制信号幅值信息来改变输出信号频率,从而实现 FM信号的产生。
单片机 信号发生器 电阻 电压 电子 电容 FPGA DAC 放大器 电路 相关文章:
- 自学单片机心得体会(06-17)
- 基于霍尔传感器的直流电机转速测量系统设计(11-14)
- 基于8051F单片机的数字音频信号源的幅度控制(12-01)
- 动态参数检测与虚拟仪器综合系统设计(11-26)
- 基于C8051F005单片机的小电阻测试仪(01-05)
- 基于MSP430F149的阻抗测量系统设计(01-15)