微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 光无线通信系统技术

光无线通信系统技术

时间:10-11 来源:C114 点击:

只能达到4km。多种因素影响其达不到99.999%的稳定性。为解决这个难题,一般会采用更高功率的激光器二极管、更先进的光学器件和多光束来解决。

对天气非常敏感是FSO的另一个主要问题。晴天对FSO传输质量的影响最小,而雨、雪和雾的影响较大。据测试,FSO 受天气影响的衰减经验值分别为:晴天,5~15dB/km;雨天,20~50dB/km;雪天,50-150dB/km;雾天,50~300dB/km。可见影响最大的是雾天,这是因为雾中的散射粒子的半径与激光的波长在同一数量级上,而且散射粒子非常集中,从而使光线的传播方向发生偏转,造成空间、角度和时间上的扩展,如图2。对于这种大气现象处理的方式,与微波通信中对待雨衰相似。要在系统传输的计算中,为光信号的衰减留有足够的系统功率余量,以便在出现浓雾最大衰减的情况下,仍能接收到所需的光信号功率。重要的是,要获得所在地长期的气象统计资料,能够知道不同等级(能见度)的雾,即不同衰减的大气介质出现的统计规律。如果了解到衰减值大于某一指标出现的概率,就能确定光无线系统为了保证可用性的指标(比如99.9%),需要容纳多大的大气损耗。而传输距离的计算公式如式(1)所示。

\
图2 光子大气传播示意

显而易见,在经常出现浓雾的地区,同样的光无线系统,可能传送的距离要比无雾或少雾的地区短得多。所以,系统的设计一定要考虑地区的气象条件,以保证良好的性能。FSO系统在发射机和接收机之间需要严格的视线传播,使发送的光信号在接收端的光瓣能够覆盖接收望远镜,不会因为大气折射率的起伏而漂离目标。此外,建筑物结构的热膨或晃动将影响两个点之间的激光对准,实际测量中发现,大楼顶部的水平移动可达楼高的1/800~1/200。为保证可靠的数据传输,FSO系统的光链路两端的激光束的对准和跟踪是系统的关键技术之一。目前在国内外普遍采用扩束法、多束法和动态跟踪技术克服这些缺陷。扩束法是展宽激光的发射光束,但扩束法降低了接收端的光斑能量密度,传输距离和速度受到影响和限制,于是业界又提出了多束法,利用多个激光器和发射镜同时发射激光束,每个光束都以相同的发射角发射,在接收处就得到一个大而相互重叠的激光光斑。从而提高了接收端的能量密度,也扩大了可接收面积。

随着通信技术的发展,对FSO系统的传输速率和距离均提出了更高的要求,如果要提高这两个技术指标,就必须要增大激光器的发射功率和提高接收机的灵敏度,但扩束法和多束法对性能指标的改善有限,于是动态跟踪法就应运而生,即利用伺服系统通过反馈装置获得光束偏差信息,调整可调微镜,使光束时刻对准接收器。采用动态跟踪技术的FSO系统设备功能结构如图3所示,一般采用双反馈方式,外反馈是位置探测器输出的入射激光束的位置误差信号,内反馈是伺服系统控制的可调微镜的位置信号,入射激光束通过接收光学系统后,聚集到位置探测器上,位置探测器将激光束的位置误差信号输出到主处理器。同时可调微镜位置探测器将探测到的微镜位置信号送到控制处理器中,控制处理器利用优化的跟踪算法进行计算,输出的角度控制信号控制伺服系统调整可调微镜,使接收光学系统始终对准入射激光束。

\
图3 动态跟踪技术FSO系统设备功能结构

激光的安全问题也会影响其使用,超过一定功率的激光可能对人眼产生影响。人体也可能被激光系统释放的能量伤害。由于这类系统采用的是毫瓦量级的小功率光源,其主要的危险是激光对肉眼造成的伤害,所以产品要符合眼睛安全标准。

3 光无线通信技术的应用

国外已经开始了将近10年的研究,但是FSO产品真正投入使用也就是最近几年的事情。FSO设备最初进入中国应该在2000年前后,那时国内从事 FSO研究的主要是一些具有军方研究项目的研究所。目前,国内FSO的发展还基本在起步阶段,但在发射功率、接收灵敏度、捕获和瞄准要求、热稳定性和机械稳定性等关键技术方面已取得明显进步,光无线通信尽管仍存在不少问题,但其技术优势更为明显。目前,光无线通信的优势正在逐渐吸引电信运营商,而其劣势正在被技术的进步抵消。由于技术的进步,在可视距离范围内,实现全天候"最后一公里"无线光通信已经没有技术障碍。光无线通信系统是一种物美价廉、有广泛应用前景和巨大市场潜力的通信系统。任何技术要想取得真正的成功,必须经受住市场与用户的考验。由于光纤成本过高,用户无法在短期内实现光纤接入,而他们却渴望享受宽带接入带来的便利,于是,FSO成了他们实现"最后一公里"宽带接入的替代选择。需要指出的是,DSL、LMDS和以太网是目前宽带接入的主流方式,但和

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top