微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 数字接收机中ADC和射频器件的动态性能要求

数字接收机中ADC和射频器件的动态性能要求

时间:06-12 来源:21IC电子网 点击:

下变频(SDC)和两次下频(DDC)结构时,在PCS频段上端附近的RF载波杂散搜索假定条件。对于SDC结构来说,杂散搜索可在RF接收频段、接收镜像频段、IF频段及IF镜像频段发现134个谐波成份,这些杂散信号大多数阶数较高,不会降低接收性能。对于DDC结构来说,杂散搜索会找出2400多个谐波成,这比SDC结构下找出的18倍还多,这些谐波分布在RF接收频段、接收镜像频段、第一级IF频段、第一级IF镜像频段、第二级IF频段和第二级IF镜像频段。对于源自高阶时钟谐波和合成器基准频率的杂散信号,可以通过在设计时仔细考虑电路板的布局或增加滤波来抑制,但是,对大量的阶数较低的杂散成份的抑制就比较困难。
Maxim的IF放大器:MAX2027 & MAX2055

Maxim也提供每级增量为1dB的数控增益、高性能IF放大器。MAX2027就是一种数控增益放大器(DVGA),采用单端输入/单端输出方式,可工作在50MHz至400MHz频率范围内,其最大增益时的噪声系数只有5dB。MAX2055则是单端输入/差分输出的DVGA,可在30MHz 至300MHz频率范围内驱动高性能ADC。在MAX2055的差分输出和ADC差分输入之间可以采用一个升压变压器,变压器提供差分驱动,有利于输出信号之间的平衡。这两个DVGA工作在5V偏置,整个增益设置范围内具有+40dBm的OIP3。更详细的内容可参考Maxim网站上 (www.maxim-ic.com.cn)的相关资料。
Maxim的高线性混频器:MAX9993 & MAX9982

在接收电路中,混频器往往承受对性能要求更加严格的较大的输入信号。理想状态下,混频器输出信号的幅值和相位与输入信号的幅值和相位成正比,而且这种比例关系与LO信号无关。根据这一假设,混频器的幅度响应与RF输入呈线性关系,且与LO输入信号无关。

然而,混频器的非线性会产生一些不希望的混频信号,称之为杂散响应,这些杂散信号是由到达混频器RF端口、并不希望出现的信号产生的IF频段的响应。无用的杂散信号将干扰有用的RF信号的工作,混频器的IF频率可由下式给出:

fIF = ± mfRF ± nfLO这里,IF、RF和LO分别是各自端口的信号频率,m和n是将RF和LO信号混频后的谐波阶数。

集成(或有源)平衡混频器(比如Maxim的MAX9993和MAX9982),由于其性能优于无源混频方案而备受关注。当m或n为偶数时,平衡式混频器能够抑制一定的杂散响应,2次谐波性能更加优异。理想的双平衡混频器可以抑制m或n (或两者)为偶数的所有响应。在双平衡混频器中,IF、RF和LO端口之间都是相互隔离的。采用设计合理的非平衡变压器,混频器可以在IF、RF和LO频带交迭。MAX9993和MAX9982特点包括:低噪声系数,内含LO缓冲器,低LO驱动,允许两路LO输入的LO开关,极好的LO噪声特性等,此外, 在RF和LO端口还集成有RF非平衡变压器。

Maxim的这些混频器内都嵌有LO噪声性能极好的LO缓冲器,降低了对LO电源的要求。通常LO噪声与电平较高的输入阻塞信号相混合会降低接收灵敏度。 MAX9993和MAX9982内含低噪声LO缓冲器,可在出现阻塞时减轻对接收灵敏度的影响。例如,假设VCO输入信号的边带噪声是 -145dBc/Hz,MAX9993的LO噪声特性的典型值是-164dBc/Hz,这样复合边带噪声就只下降了0.05dBc/Hz到 -144.95dBc/Hz。采用这种方法,用户不仅为混频器提供一个电平较低的LO信号,还能确保接收机的混频特性不会因MAX9993内置LO缓冲器的性能而降低。

此外,还有一种棘手的2阶杂散响应,也称为半中频(1/2 IF)杂散响应,对于低端注入,混频器阶数为:m = 2、n = -2;对于高端注入,混频器阶数为:m = -2、n = 2。低端注入时,引起半中频寄生响应的输入频率比希望的RF频率低fIF/2 (图4)。所希望的RF频率为1909MHz与1740MHz的LO频率进行混频,得到的IF频率为169MHz。虽然,CDMA的RF和IF载波频宽为 1.24MHz,但在这里表示成一个频率为中心载频的单频信号。在这个例子中, 1824.5MHz频率的无用信号造成了169MHz的半中频杂散成份:

验证:
2 x fHalf-IF - 2 x fLO =
2 x (fRF - fIF/2) - 2 x (fRF - fIF) =
2 x (fRF - 2 x fIF/2) - 2 x fRF + 2 x fIF = fIF

由此可得到:
2 x 1824.5MHz - 2 x 1740MHz = 169MHz

\
图4. 有用fRF, fLO, fIF与无用fHalf-IF频率的位置

抑制总量(也称为2x2杂散响应)可根据混频器的第二截点IP2来预测,图5给出了2x2 IMR或杂散值(来自Maxim的MAX9993数据资料)。注意:图中信号电平是用输入IP2 (IIP2)性能计算的混频器输入电平。

具体的计算公式如下:

IIP2 = 2 x IMR + PSPUR = IMR + PRF
= 2 x 70dBc + (-75dBm) = 70dBc + (-5dBm)
= +65dBm

由于Maxim的MAX9982 900MHz有源滤波器提供的典型杂散响应2RF - 2LO为65dBc,因

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top