微波EDA网,见证研发工程师的成长!
首页 > PCB和SI > EDA和PCB设计文库 > TVS器件信息设备ESD防护中的应用

TVS器件信息设备ESD防护中的应用

时间:09-11 来源:互联网 点击:
基于TVS的ESD防护

处理瞬时脉冲对器件损害的最好办法,就是将瞬时电流从敏感器件引开。方法是TVS二极管在线路板上与被保护线路并联。这样当瞬时电压超过电路正常工作电压后,TVS二极管便发生雪崩,以提供给瞬时电流一个超低电阻通路,其结果是瞬时电流通过二极管被引开,从而避开被保护器件,并且在电压恢复正常值之前使被保护回路一直保持截止电压。当瞬时脉冲结束以后,TVS二极管自动同复高阻状态,整个回路进入正常电压状态。

便携产品底部连接器的保护

底部连接器设计厂泛应用在移动消费类产品上,目前市场上的应用产品主要为移动电话、PDA、DSC(数码相机)以及MP3等便携产品。在这些产品中,当数据线接口与外部设备连接时,可能会受到高能量的冲击,故可采用如图3所示的TVS桥式保护电路。目前,集成有TVS和过流保护功能的常见器件有:NZQA系列、MSQA系列、NSQA系列和SMF系列,以上产品都带4个单相独立线路ESD保护,其中NZQA系列的封装形式是SOT-553,其它三个系列的封装形式是SC-88A。由于SOT5xx封装的TVS器件均针对260℃回焊温度处理工艺生产,符合100%无铅和静电放电保护要求,因而比传统的封装可减少电路板空间达36%,厚度降低40%,适合用于对电路板空间要求严格的便携设备,如手机、数码相机、MP3播放器等。



视频线路的保护

视频数据线具有高数据传输率,(其数据传输率高达480 Mbps,有的视频数据传输率达到1G以上),因而要选择低电容LCTVS,通常是将一个低电容二极管与TVS二极管串联,以降低整个线路的电容(可低于3 pF),从而达到高速率回路的要求。目前视频常见的输出端口设计有D-SUB、DVI(28线)、SCART(19线)和D-TERMINAL(主要日系产品在用)。如图4所示为D-SUB端口视频线路的.ESD保护电路。  



SIM卡数据线路保护

SIM卡数据线路保护一直是各个公司的产品设计重点。在针对不同的用途选择器件时,要避免使器件工作在其设计参数的极限附近,还应根据被保护回路的特征及可能承受ESD冲击的特征来选用反应速度足够快、敏感度足够高的器件,这对于有效发挥保护器件的作用十分关键。另外,集成了其它功能的器件也应当重点考虑。图5所示为SIM卡数据线路保护电路。最近的许多新产品更能适应便携设备高集成度、小型化要求,将ESD(TVS)/EMI/RFI保护集成在一个芯片的器件中,不但可以有效缩小空间,还可大大减少器件采购成本和加工成本.



USB保护

通用串行总线(USB)技术是连接PC到不同外部设备的新方法。可实现PC、服务器、笔记本和集线器等实现下游端口与外设端的上游端口的数据交换。现在的USB技术有两种数据速率:低速(1.5Mb/s)和全速(12Mb/s)。12Mb/s的USB数据流比并行端口快10倍,比标准串口快100倍。频率的增加必须相应地有适应ESD敏感度的器件,图6所示是快速响应的TVS应用电路,能满足USB线路终端的ESD保护,同时具有良好的低通滤波功能。



音频,扬声器数据线路保护

在音频数据线路保护方面,由于音频同路的信号速率比较低,且对电容器件的要求不太高(100 pF左右都是可以接受的)。事实上,有的手机设计中将耳机和麦克风合在一起,有的则是分立线路。前一种情况可以选择单路TVS,而对于后一种情况,如果两个回路是邻近的,则可以选用多路TVS阵列,这样,只用一个器件就能完成两个回路的保护图7所示是一种音频/扬声器数据线路的保护电路。



按键,开关保护

由于按键和开关回路的数据率很低,对器件的电容没有特殊要求,因此,使用普通的TVS阵列都可以胜任。

PCB设计与布局

PCB设计的注意事项

对于本设计,在PCB设计中,应注意以下几点:

(1)比较关键的信号线应尽量避开保护线路,并应尽量将接口安排在同一个边上;

(2)避免被保护回路和未实施保护的回路并联,应将接口信号线路和接地线路直接接到保护器件上,然后再进入回路的其它部分;

(3)各类信号线及其馈线所形成的回路所环绕的面积要尽量小,以减少辐射噪声,必要时可考虑改变信号线或接地线的位置;

(4)将复位、中断、控制信号远离输入/输出口,并远离PCB的边缘;

(5)采用高集成器件或二极管阵列不但可以大大节约线路板上的空间,而且可减少由于回路复杂而可能诱发的寄生性线路自感影响;

(6)在可能的地方都加入接地点,在电路系统设计中应遵循"一点接地"原则。

PCB的布局

合理的PCB布局最重要的是要在使用TVS二极管保护的同时避免自感。ESD设计很可能会在回路中引起寄生自感,并对回路形成强大的电压冲击,从而使IC承受极限而造成损坏。负载产生的自感电压与电源变化强度成正比,而ESD冲击的瞬变特征极易诱发高强自感。减小寄生自感的基本原则是尽可能缩短分流回路,因此,必须考虑包括接地回路、TVS和被保护线路之间的回路,以及由接口到TVS的通路等所有因素。所以,只有将TVS器件与接口尽量接近,并与被保护线路尽量接近,才会减少自感耦合到其它邻近线路上的机会。  

栏目分类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top