微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > Altera专家:认知无线电,认知一切

Altera专家:认知无线电,认知一切

时间:02-24 来源:Altera 点击:

难解决的问题。

  Weightless实例

  两个实例会有助于帮助对这些概念进行澄清。首先,Weightless标准实际上并不是CR,而是认知网络,其中非常简单的无线电只是一个组成单元。第二个是一个理论实例,适合公共安全应用更复杂的真CR。

  Weightless体系结构与IEEE 802.22相似,在所谓的空白电视信号频段内采用区域网,这是电视广播带宽范围内未被占用的本地通道。802.22旨在为人们提供宽带接入,与此不同的是,Weightless专门设计用于为不同的机器、传感器和制动器提供窄带物联网连接,其节点的成本和功耗都非常低。

  据Weightless的Webb,各种不同的目的导致了体系结构的显著不同。Webb说:"对于空白电视信号频段内未获得许可的设备,第一个限制要求是不能干扰任何人的电视接收。这很难做到,因为您完全知道所有电视发射器位于哪里,但是却不知道接收器在哪里。

  Webb继续解释:"我们最初的想法是为终端设计成本非常低的CR,与802.22的目的非常相似。但是,我们发现在实际中,您可能恰好靠近正在观看电视的人,远距离电视台发射的信号传送到他这里时已经非常弱了。"

  具有足够动态范围的CR要识别这些弱信号,需要花费很高的成本,提供很大的功率。因此,Weightless选择了完全不同的方法来进行感知:中心控制的三层网络,如图3 所示。在这里,终端向基站报告其物理位置,基站查询云中的应用程序,云端使用了许可广播发射器以及其他基站的位置表,以获得可用频率的列表。Webb评论说:"这对于设计而言是很有趣的算法。"


图3.Weightless网络将认知功能分散到三层中。

  这张查找表保证了终端不会影响所有人晚上看电视,也不会与其他基站竞争同一通道。但是,它并不保证终端与获得许可设备之间不出现干扰,例如,无线麦克风,或者在同一区域中漫游的其他未获得许可的低功率设备。为解决这一问题,基站为终端分配了8个频率。终端以两秒间隔进行跳频,以减小来自这类源的干扰。

  由于终端使用了直接扩频传输技术,因此,系统有更大的自由度。实际上,基站监视每一终端的BER,命令终端调整扩频因子,以便在带宽和范围上达到平衡。

  Weightless采用了认知系统的三种定义行为:感知、分类和自适应。但是,这一标准并没有将所有这些功能构建到终端无线电设备中,而是把它们分散开。大部分认知放在准静态表中,而不是在算法中。在基站中对自适应功能、大部分感知功能和分类功能进行平衡。在网络中对功能进行分配,大幅度降低了终端的成本,单芯片电池供电设备能够采用很低的占空比进行工作。

  紧急服务实例

  第二个实例不是基于现有的标准,或者相关的实际无线电,而是基于美国联邦通信委员会公共安全和国土安全局所建议的构想。然而,美国紧急状态响应人员面临的一个关键而又长期存在的问题是不同的单位无法在紧急情况下与其他单位的设备通过无线电进行通信,例如警察、消防和医疗团队等。

  有时候问题在于频谱的可用性。例如,最近的公开报道显示,加州奥克兰新装备的警察无线电系统850 MHz频段接近当地的2G蜂窝服务,经常出现通信错误。

  其他问题来自本身的认知,例如,常规广播与紧急情况时官方间紧急通信带宽出现冲突。其他的问题涉及到不同服务间的兼容性。警察、消防、医疗和城市无线电系统在紧急情况下都不具有互操作性。局首席工程师Bill Lane和电子工程师Yoon Chang在其技术主题文章"公共安全的认知无线电"中写道,随着目前窄带语音无线电成为类似于高性能智能电话的媒体终端,这些问题只会越来越严重。Lane建议采用CR作为解决方案。CR能够在紧急点附近实时找到可用频谱,避免了干扰源。它可以优先使用可用频谱,以保证最关键的消息延时最低。通过找到周围无线电设备的频率、调制和编码方式,CR可以桥接区域中不兼容的系统。

  可以完成所有这些服务的无线电设备会要求在本地实现所有这三种认知模块:感知、分类和自适应,如 图4 所示。对于感知功能,无线电设备需要一条专用监视链。好消息是这条链不需要带宽很大的超高动态范围接收机。对于需要扫描目标带宽中接收器通道的应用,要为每一通道构建一组数据。


  图4.紧急状态响应人员的认知无线电。

  分类硬件要比简单的OSA无线电复杂得多。FFT级和乘法器会为每一频段建立PSD功能,然后,信号处理链会应用周期分析,以提取出某一调制方式的特征。这样,分类器会为自适应模块提供每一频段大量的信息:干扰在哪里,能够识别出来的信号在哪里,以及足够的统计信息来找到附近其他的无线电信号。

处理这

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top