微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 单片分布微波放大器的设计

单片分布微波放大器的设计

时间:03-27 来源: 点击:

大其中有一半的功率被输出传输线的50欧负载所吸收,为了提高输出效率,人们通常采用一些技巧,如渐缩型传输线方法。本设计采用了50欧姆输入输出线,为了减少DC功率的消耗,该传输线的一端的50欧姆终结负载和一个较大的电容(25pF)串联后,再通过通孔接地,这样既能保证射频信号接地,又能实现隔直流的效果。漏极较大的直流供电电流只流经低阻抗的电感元件,而不是50欧的终结负载(如图5),这样可以有效的减小50欧终结电阻上的功耗。这里漏极电感的大小也是一个重要的设计参数,该电感直接影响电路在1GHz附近的低频滚降速度,如果增大电容将会减小滚降速度,但是同时会增加串联电阻,从而提高直流功耗,而且较大的电感也会增大版图面积。

  在提交产线流片之前,各设计还必须经过严格的设计规则检查DRC(design-rule check),自198?年第一次MMIC设计课程开始,约翰·霍普金斯大学就采用ICED(ICEDitor)软件,并采用TriQuint提供的 DRC规则进行设计规则检查。另外还使用了"版图转电路图"LVS(Layout Versus Schematic)工具进一步比较从ADS中提取出来的网表是否符合ICED软件中的实际电气连接。有时设计虽然能通过DRC检查,但是仍然会有一些致命的错误,只有LVS工具才能发现这些问题。新版本的ADS已经具备内置的连接性检查功能,可以排除一些连接性错误,但是外部的LVS检测仍然是很有必要的。

\
图5:分布式放大器电路的直流等效电路,可以看出流经电感L35的电流只引起很小的压降。

\
图6:实测的输出功率和效率结果。

  表1:PHEMT分布式放大器在3.3V电压和25mA电流偏置下的各项指标实测结果。

图6和表1是整个电路的实际测试结果。可以看到在3.3V的24mA直流供电下,该电路达到了10%的功率附加增益PAE(Power Added Effeciency)以及+10dBm的输出功率。噪声系数的实测值和仿真值也很接近(图7),在5到6GHz频段,噪声系数仅为2dB,这在具备 1~10GHz的10倍频程(decade)带宽的电路中算是很出色的表现了。54平方密尔(mil-square)的芯片上还放置了很多其它器件,包括一个设计中采用的6×30μm增强型PHEMT测试建模管。在3V和3.3 V电压下,8~9mA电流时,分别测试了这个模型管,并将其S参数用于电路进行二次仿真。图8为该PHEMT模型管的版图。图9和图10则是针对测试管的实测和仿真数据的比较。由于测试的参考面不同,测试模型管的寄生参数和实际电路中使用的晶体管有微小的区别,正是这些巨别导致了测试值和再仿真结果(使用 ADS和Sonnet软件)在高频段有一些差别。对以单独的6×30μm模型管而言,其实测值和使用TOM模型的ADS仿真值非常接近。

\
图7:使用噪声分析仪测试的增益和噪声系数,和ADS仿真的结果对比。

\
图8:6×30μm栅宽的增强型PHEMT测试建模管的版图。

\
图9:实测的(蓝色)增强型PHEMT测试建模管的前向传输参数S21和仿真结果(红色)的对比。

  MMIC建模非常复杂,例如,在仿真时是否可以忽略互连线的影响。忽略互连线可以极大的简化设计,而且在2.4GHz以下,互联的影响很小。通常这些互联微带线的模型都是在其长度超过几倍衬底厚度的情况下建模的,而实际MMIC设计中很少会发生这种情况。典型的微带线模型一般都会高估其长度(即电感)效应。另外,还要考虑是否需要一个电磁仿真,以确保原始设计中忽略的寄生参数不会有太大的影响。除非设计者确实想压缩版图面积,否则采用3到5倍的线宽(而不是3到5倍的衬底厚度)做为元件间隔,一般都不会有问题。

尽管单独的6*30μm PHEMT模型管的实测值和仿真结果很吻合,但是把晶体管的实测数据带入电路进行二次仿真,确实得出了更接近实测值的高端滚降特性。设计者再次使用了 Sonnet公司的电磁仿真软件,以5平方微米的分辨率以及100μm的衬底厚度对整个设计进行电磁仿真。对于Sonnet软件,这个电路面积相对较大,以至于必须分割成两个子块来分析。使用Sonnet电磁仿真结果加上实测的晶体管参数,得出的整个电路的各项指标和实际测试值吻合。Sonnet软件的仿真结果和ADS的二次仿真结果也很吻合(图12、13、14),注意:增益和匹配在高频段(10GHz左右)形状相似,但是仍然略有差别。尽管这些差别很小,但是仍然有必要寻找这些差异的解释。约翰·霍普金斯大学MMIC学科的学生反而能从这些差别中学到更多东西。寻找这些差别的来源,更有利于增长他们的设计经验。使用TriQuint公司的产线为其流片,并让学生参与成品的测试,使该项课程更具实际意义,因而得到了大家的一致好*。约翰·霍普金斯大学也对TriQuint、Agilent(原EEsof)和Applied Wave Research等公司的有力支

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top