微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 设计兼顾高线性和高效率的RF放大器

设计兼顾高线性和高效率的RF放大器

时间:05-18 来源: 点击:

方案会比较困难。另外,在晶体管输出接近电源电平时,晶体管的饱和情况在解调方案是很难估计和处理的,这是因为每个RF源的电源电压都有一定不确定性。要解决符号精度差的问题,唯一的方法是提高RF功率放大器的精度。

  由于晶体管的特性曲线,A级输出级具有固有的非线性特性,使输出信号正和负幅值不对称。在较低频率下,通过反馈可以解决非线性问题。很快,晶体管放大器就演化为运算放大器,其前向增益可达120dB以上,这样设计师就可以通过采用大量负反馈来改善信号的线性。此反馈与A-B级输出级组合可达到较高线性度。例如美国国家半导体公司的LME49710标称线性度为0.00003%。但是要注意,此线性度规格是对应于频率相对较低的工作条件。所有放大器在频率升高时都会出现增益下降的现象。电流反馈放大器结构在高频下增益损失较小,但在高频下增益仍会有所降低。

  请记住,通过采用大反馈所提高的线性度也与大前向增益有关。因为放大器在高频下前向增益较低,所以在高频下反馈也比较小。因此RF放大器,特别是RF功率放大器,在工作频率为1GHz和更高时无法使用常规的反馈。

  同样困难的是,多数RF放大器都是开路的,这就意味着它们很容易出现电源抑制和输出饱和问题。由于RF放大器在接近晶体管高限的频率下工作,实际操作中无法使其成为高增益运算放大器。在这点上,RF放大器设计师仍需要面对几十年前电子管设备设计师所遇到的所有困难。

  放大器设计师除了要面对线性问题外,还需要面对其他会影响线性的因素,这使RF放大器设计变得更为困难。例如,放大器在加电和发热工作状况下会产生记忆效应,从而引入随时间或数据而变的非线性。电子记忆效应类似于老式吉他电子管放大器中的记忆效应。这类老式放大器配有廉价的电源系统,通常为开路线性电源,在电子管整流线路上装一个电容。高音量的重力和弦会强烈激励输出级,并在电容放电后将电源电压拉下来。大负载过去后,线路会给电容充电使其电压恢复,但该过程要耗费几十毫秒的时间。电源电压的下降会改变吉他放大器输出晶体管的偏置,引起不同的"数据相关"非线性。非线性程度取决于先前信号的情况。RF功率放大器也容易发生类似现象。有些数据序列中可能需要采用可以很强地激励放大器的符号。这种情况会影响到电源和放大器偏置,并产生时间相关的非线性。此非线性随RF载波调制情况而变。

  除了这样的电子记忆效应外,放大器设计师还必须处理热记忆效应。热晶体管和冷晶体管的传递函数是不同的,这就会给系统引入时间相关的非线性。如果环境温度较高或是数据流使输出级温度升高,晶体管表现出的非线性特性将与低温时的有所不同。随着RF功率放大器中集成了更多的CMOS芯片,发热引起的问题变得更为严重。

图4
图4,晶体管放大器固有非线性(a),削波失真(b)和电子记忆效应(c)及热记忆效应(d)所导致的RF功率放大器非线性。

  图4 显示了RF功率级的非线性情况。晶体管非线性问题的核心在于晶体管电流-电压传递函数为一对数曲线,而不是直线。下一个问题是如何解决晶体管输出电压接近电源电平时的饱和问题。

  提高线性的方法

  RF设计师不能仅仅将放大器输出摆幅限制在较小范围内,而牺牲效率性能。他们可以采用反馈、前馈和预失真手段来保持效率,以延长电池寿命和节省功耗。反馈措施适用于要求高线性、窄带宽和中等效率的设计。前馈操作可用于要求高线性、但带宽比较宽且对效率要求不高的设计。预失真可用于中等线性和带宽要求的设计,但可以实现高效率。由于RF功率放大器工作频率是如此之高,采用常规的反馈措施并不实用。在此情况下,"反馈"一词通常指笛卡儿(Cartesian)反馈。在该种反馈中,电路将RF输出重新变换回基带,得到I(相位)和Q(幅值)信号,并将这些信号送回到输入级。这个系统可以达到高线性,但前提是不会过度激励输出级。它的效率会比所预想的要低。由于反馈放大器容易振荡,所以该方法不能用于宽带放大器。

  为了使线性和带宽都达到可接受的水平,RF设计师采取了预失真方法:进行调制的I和Q信号可以补偿确定性的系统非线性因素的影响。由于数字系统还可以采用复杂的算法预测热记忆效应和电子记忆效应,这样的结构还可在出现此类问题时保持线性。注意这里仍然涉及到RF信号路径上各元件的固有线性问题。在数字域的校正是有一定限度的。信号路径越接近理想情况,数字系统设计师就越容易提供准确的预失真信号。

Linear Technology公司高频产品市场经理James Wong认为,对于系统元件的固有线性,设计师始终是很清楚的。"与被动

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top