无线设备测试的衰落仿真
时间:03-21
来源:
点击:
衰落曲线取决于信号环境
传播信道的脉冲响应严重依赖于用户环境。当信号通过空气传播时,它会遇到各种大小物体,因此会通过各种路径到达接收机。每条路径有不同的距离,因此接收的信号在幅度和相位上是波动的。当发送的能量遇到阻碍时,之后的情形取决于与入射信号的波长相比,阻碍物的大小及密度。当电磁波遇到远远大于波长的大型平滑物体时(如混凝土筑造的大楼),信号被反射或衍射。如果电磁波遇到其大小是波长级的物体(如街道指示牌、树叶或一缕烟雾),它会在所有方向上均匀地散射。全向天线能够接收似乎来自各个方向的的散射信号的少量比特。这些散射信号的幅度遵循瑞利分布描述的概率密度函数。
当有很强的直射路径时,幅度会更接近莱斯分布曲线。这在农村环境中最为准确。在农村环境中,障碍物相对较少,因此允许从基站到移动台建立一条很强的直射路径。莱斯模型对卫星通信测试也是一个很好的选择,因为这些系统包括很强的直射路径以及大气衰减和散射。
如果接收机正在移动,它会使到达接收机的多径信号的频率展宽。随着速度提高,频移也会增加。多径信号的频移集合导致了频率展宽,或称衰落速率fd。
如果天线在室内环境中移动,它也会经历多普勒展宽。但是,得到的功率频谱并不是正态U形曲线,而是平坦曲线,看上去类似一个长直角。这种变化的形状主要是天花板多通道反射的结果,很明显,在室外环境中不会发生这种情况。
衰落测试
测试无线系统(包括移动台和基站)在衰落情形下是否能够成功地收发数据,是检测过程的重要组成部分。无线标准一般会规定广泛而详细的衰落测试。当前,为实现衰落测试而采用的信道仿真方法是一个极具挑战性的过程。
图7. 当前信道仿真方法在模数变换过程中降低了精度。
当前的信道仿真方法从RF信号开始,到RF信号结束(如图7)。需要仿真衰落的测试信号被下变频以及数字化。然后在数字信号中结合衰落曲线,其结果再上变频回到RF。最后增加噪声。(注:AWGN独立于多径效应,因此必须单独增加。)
这种方法包括两个过程:转换损耗和噪声校准。这两个过程导致效率低下、准确性差。当仿真信号转换成数字信号或数字信号转换成仿真信号时,测试设备(而不是信道或被测设备)会引入误差。这种转换损耗增加了测量不确定性。
确定要增加相应噪声的数量,以获得某个载噪比(C/N)是一个困难的过程。我们要求必须在仿真衰落后,在信号中增加AWGN,这样它不会被衰减掉而偏离希望的信号电平。但是,增加这种噪声使总功率电平偏离了衰落后的总功率电平,同时改变了C/N比率。因此必需在衰落后计算载波功率,以确定输入信号功率一定时要增加的相应噪声电平,这是一个复杂、耗时、代价高昂的过程。
信道仿真集成技术
安捷伦为进行无线设备的数字设计的研发工程师研制出一种新的信道仿真技术。它通过更快、更准确的信道仿真,减少设计检测时间。这种新方法增强了业内领先的E4438C ESG矢量信号发生器的功能,为它提供了一个直观的软件界面,同时提供了一流的基带发生硬件。ESG使用内置的蜂窝通信模式、Signal Studio应用软件、或通过数学建模工具(如安捷伦Eesof的高级设计系统(ADS)或MATLAB?)创建的定制波形,创建数字基带IQ信号。这些数字基带信号发送到包含Baseband Studio PCI卡和Baseband Studio衰落软件的PC上,用户可以通过简便易用的软件界面,在PC上配置信道仿真参数。基带信号在Baseband Studio PCI卡中以数字方式衰落,然后发回到ESG,转换成仿真I/Q或RF信号输出。
对不同衰落曲线进行仿真是在各种环境中评估接收机性能的基本要求。Baseband Studio衰落软件可以仿真大范围衰落、小范围衰落、或两者的组合。它可以仿真由于接收机很小的位移导致的信号迅速波动以及由于远程物体的阴影效应导致的平均功率的缓慢变化。其支持的衰落曲线包括:
· 对数正态分布 - 大范围直射路径损耗
· 瑞利分布 - 小范围多径散射
· 莱斯分布 - 含直射路径的瑞利分布
· Suzuki分布 - 呈对数正态分布的瑞利分布
· 纯多普勒效应 - 由于移动导致的多普勒频移
用户定义的衰落曲线可以灵活地满足特定的测试需求。您可以调节多径数量与可用带宽的关系,使处理能力达到最大,实现测试的灵活性。它在异常精确的仪器平台上实现,整个衰落过程在数字基带上实现,提高了测试精度。您也可以增加两个通道,仿真分集天线或干扰信号。您可以使用预先配置的W-CDMA、TD-SCDMA、cdma2000、cdmaOne、1xEV-DO、1xEV-DV、GSM、EDGE和WLAN等标准衰落曲线,简化初始设置。
另外,安捷伦还为常用的蜂窝制式提供了预先定义的设置,这同样简化了测试准备工作。这些曲线可以修改,为仿真特定环境提供量身定制的配置。预先定义的设置中还包括了3GPP W-CDMA独有的移动传播条件和生灭衰落曲线。
图8. 新的安捷伦衰落方案支持用户定义的灵活性。
图8是安捷伦新推出的衰落解决方案的通用方框图。一对I/Q输入信号被引到最多N条不同的信号处理路径上,仿真最多N条不同的RF传播路径。时延模块以非常精细的增量(几分之一纳秒)在每条路径上增加用户自定义的时延。复数乘法模块把时延信息与DSP中的衰落算法提供的衰落信息结合在一起。衰落算法对输入I和Q数据使用用户指定的衰落曲线。最后,这些路径进行叠加,生成一个I/Q基带数据流,然后输入至ESG,由ESG上变频到RF。
图9. DSP衰落算法方框图。
图9说明了使用噪声滤波的方法形成衰落的DSP算法。呈高斯分布的复数随机噪声具有瑞利分布的幅度。幅度表把随机数发生器中的正态分布噪声转换成瑞利分布。相位表把表示相位的正态分布噪声输入转换成适当的I和Q值,生成该相位的单位矢量。
莱斯衰落只是瑞利衰落外加一条额外的未衰落的直射路径,这条路径相对于瑞利衰落信号发生多普勒频移。对莱斯衰落曲线而言,在其进入复数乘法模块之前,除了多普勒展宽外,多普勒模块还在衰落信号中增加了一个旋转的恒定幅度的矢量(多普勒频移)。
传播信道的脉冲响应严重依赖于用户环境。当信号通过空气传播时,它会遇到各种大小物体,因此会通过各种路径到达接收机。每条路径有不同的距离,因此接收的信号在幅度和相位上是波动的。当发送的能量遇到阻碍时,之后的情形取决于与入射信号的波长相比,阻碍物的大小及密度。当电磁波遇到远远大于波长的大型平滑物体时(如混凝土筑造的大楼),信号被反射或衍射。如果电磁波遇到其大小是波长级的物体(如街道指示牌、树叶或一缕烟雾),它会在所有方向上均匀地散射。全向天线能够接收似乎来自各个方向的的散射信号的少量比特。这些散射信号的幅度遵循瑞利分布描述的概率密度函数。
当有很强的直射路径时,幅度会更接近莱斯分布曲线。这在农村环境中最为准确。在农村环境中,障碍物相对较少,因此允许从基站到移动台建立一条很强的直射路径。莱斯模型对卫星通信测试也是一个很好的选择,因为这些系统包括很强的直射路径以及大气衰减和散射。
如果接收机正在移动,它会使到达接收机的多径信号的频率展宽。随着速度提高,频移也会增加。多径信号的频移集合导致了频率展宽,或称衰落速率fd。
如果天线在室内环境中移动,它也会经历多普勒展宽。但是,得到的功率频谱并不是正态U形曲线,而是平坦曲线,看上去类似一个长直角。这种变化的形状主要是天花板多通道反射的结果,很明显,在室外环境中不会发生这种情况。
衰落测试
测试无线系统(包括移动台和基站)在衰落情形下是否能够成功地收发数据,是检测过程的重要组成部分。无线标准一般会规定广泛而详细的衰落测试。当前,为实现衰落测试而采用的信道仿真方法是一个极具挑战性的过程。
当前的信道仿真方法从RF信号开始,到RF信号结束(如图7)。需要仿真衰落的测试信号被下变频以及数字化。然后在数字信号中结合衰落曲线,其结果再上变频回到RF。最后增加噪声。(注:AWGN独立于多径效应,因此必须单独增加。)
这种方法包括两个过程:转换损耗和噪声校准。这两个过程导致效率低下、准确性差。当仿真信号转换成数字信号或数字信号转换成仿真信号时,测试设备(而不是信道或被测设备)会引入误差。这种转换损耗增加了测量不确定性。
确定要增加相应噪声的数量,以获得某个载噪比(C/N)是一个困难的过程。我们要求必须在仿真衰落后,在信号中增加AWGN,这样它不会被衰减掉而偏离希望的信号电平。但是,增加这种噪声使总功率电平偏离了衰落后的总功率电平,同时改变了C/N比率。因此必需在衰落后计算载波功率,以确定输入信号功率一定时要增加的相应噪声电平,这是一个复杂、耗时、代价高昂的过程。
信道仿真集成技术
安捷伦为进行无线设备的数字设计的研发工程师研制出一种新的信道仿真技术。它通过更快、更准确的信道仿真,减少设计检测时间。这种新方法增强了业内领先的E4438C ESG矢量信号发生器的功能,为它提供了一个直观的软件界面,同时提供了一流的基带发生硬件。ESG使用内置的蜂窝通信模式、Signal Studio应用软件、或通过数学建模工具(如安捷伦Eesof的高级设计系统(ADS)或MATLAB?)创建的定制波形,创建数字基带IQ信号。这些数字基带信号发送到包含Baseband Studio PCI卡和Baseband Studio衰落软件的PC上,用户可以通过简便易用的软件界面,在PC上配置信道仿真参数。基带信号在Baseband Studio PCI卡中以数字方式衰落,然后发回到ESG,转换成仿真I/Q或RF信号输出。
对不同衰落曲线进行仿真是在各种环境中评估接收机性能的基本要求。Baseband Studio衰落软件可以仿真大范围衰落、小范围衰落、或两者的组合。它可以仿真由于接收机很小的位移导致的信号迅速波动以及由于远程物体的阴影效应导致的平均功率的缓慢变化。其支持的衰落曲线包括:
· 对数正态分布 - 大范围直射路径损耗
· 瑞利分布 - 小范围多径散射
· 莱斯分布 - 含直射路径的瑞利分布
· Suzuki分布 - 呈对数正态分布的瑞利分布
· 纯多普勒效应 - 由于移动导致的多普勒频移
用户定义的衰落曲线可以灵活地满足特定的测试需求。您可以调节多径数量与可用带宽的关系,使处理能力达到最大,实现测试的灵活性。它在异常精确的仪器平台上实现,整个衰落过程在数字基带上实现,提高了测试精度。您也可以增加两个通道,仿真分集天线或干扰信号。您可以使用预先配置的W-CDMA、TD-SCDMA、cdma2000、cdmaOne、1xEV-DO、1xEV-DV、GSM、EDGE和WLAN等标准衰落曲线,简化初始设置。
另外,安捷伦还为常用的蜂窝制式提供了预先定义的设置,这同样简化了测试准备工作。这些曲线可以修改,为仿真特定环境提供量身定制的配置。预先定义的设置中还包括了3GPP W-CDMA独有的移动传播条件和生灭衰落曲线。
图8是安捷伦新推出的衰落解决方案的通用方框图。一对I/Q输入信号被引到最多N条不同的信号处理路径上,仿真最多N条不同的RF传播路径。时延模块以非常精细的增量(几分之一纳秒)在每条路径上增加用户自定义的时延。复数乘法模块把时延信息与DSP中的衰落算法提供的衰落信息结合在一起。衰落算法对输入I和Q数据使用用户指定的衰落曲线。最后,这些路径进行叠加,生成一个I/Q基带数据流,然后输入至ESG,由ESG上变频到RF。
图9说明了使用噪声滤波的方法形成衰落的DSP算法。呈高斯分布的复数随机噪声具有瑞利分布的幅度。幅度表把随机数发生器中的正态分布噪声转换成瑞利分布。相位表把表示相位的正态分布噪声输入转换成适当的I和Q值,生成该相位的单位矢量。
莱斯衰落只是瑞利衰落外加一条额外的未衰落的直射路径,这条路径相对于瑞利衰落信号发生多普勒频移。对莱斯衰落曲线而言,在其进入复数乘法模块之前,除了多普勒展宽外,多普勒模块还在衰落信号中增加了一个旋转的恒定幅度的矢量(多普勒频移)。