微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 手机等移动终端产品的电视接收天线设计

手机等移动终端产品的电视接收天线设计

时间:11-18 来源: 点击:

体表现,而非单一零组件的表现特性,因此传统使用单一零组件的评估方式完全不适用。第四由于是看整体表现,因此其测试方法也与传统天线的测试方式截然不同,消费者需要的是整体表现效果,而非亮丽的数据资料。

  提供研发相关产品时参考的相关技术

  相对于波长在电气特性上非常小的天线而言,辐射电阻会变得非常低,要达到谐振的Q值将很高,因此要获得的可用频宽比例会非常窄。在很多情况下,天线必须比半波长偶极天线(doublet)小很多,除了必须直接连结接收器端子外,甚至需要安装成隐藏内建式天线,由于其本身的条件上将无法谐振,此为近场天线(接收器本身电场/幅射场)等于磁场(感应场区域范围内工作的天线)的首要问题。

  其他技术涵盖了接收机灵敏性、多重讯号过载、相位杂讯、选择性和多工径干扰等等。而且还需要克服移动接收时的多重反射与都普勒效应,天线还必须小于5公分或内建天线。

  在低频电路中,电磁波的波长与其所使用的电路元件的尺寸相比,是一过非常微小的量,故可将元件或电路视为集中于一点,因此一般称之为集总元件或电路(Lumped components or circuits),所以可以直接使用克希荷夫电流和电压定律进行电路分析工作。但在微波电路中,因微波的波长很短,故必须将元件视为散布元件(distributed components)来处理,因为此类元件所有元件参数,如其等效的R、L、C、G电路参数,在元件内部的位置不同而会有不同的数值。一般必需将之当作四维(三维空间加一维时间)电磁场的问题来探讨,才能得到完整的分析。

  但是求解电磁场问题是一件极困难且费时的理论计算工作,即使是一个很简单且极具对称性的微波结构,目前快速的超级电脑也须经过相当长的计算时间,才能得到精确的结果。若微波结构稍微复杂些的电磁场问题,几乎不可能得到正确的解,只能得到近似解。

  在低频集总电路中连接各元件间导线,不需要顾虑导线的长短,及其是否具有任何R、L、C、G效应,甚至不必理会导线和元件之间是否阻抗匹配(impedence matching)等等问题,仅需将其视为一个没有任何作用,没有任何信号衰减的短路电路连结点(lossless connecting node)。但是在射频及微波电路中,导线本身会因来自材料和结构所造成的电阻、电感、电容、和电导等效应存在,且这些参数是工作频率的函数。所以在进行电路分析时,不能将之仅视为一个无损耗的节点,而必需将之视为一个含有与频率相关等效电路参数的元件。此外,其连接导线的长短和粗细不仅影导线本身的特性阻抗(characteristic impedance)值,也会影响与其相连结的元件间阻抗匹配的与否问题。

  集肤效应:使用的材料的频散效应与等效电阻随频率变化有关,所产生的金属表层效应(skin effect)也会影响电波的通道衰减。

  绝缘材料会感应出并联式的寄生电容效应(shunt parasitic capacitance),此种电容性电抗值(容抗XC=1/ωC)会随着频率增加而变小。连接的引线(Connecting leads)会感应出串联式电感效应(Series inductance),此种电感性电抗(感抗XL=ωL),会随着频率增加而变大。这两项感应效应,均会改变原有的等效阻抗值(Equivalent impedance)。因此在元件的布置必须经过特别的设计和处理,以减少不必要的寄生电抗。

  抗雨衰能力,即电磁波传播行径受空气中水气、氧分子、雨雪、云雾、冰刨等不同的大气分子,会有不同程度的吸收作用,这些吸收作用会衰减电磁波在大气中传送的能量,因此在接收端的设计要能够由周围电场感应出所需要的电磁波能量,以减低气候因素的影响(通常频率高影响就愈明显)。

抗干扰的特性(本体干扰与外在干扰)

  本体干扰源于接收器本身,也就是一般所量测的EMC、EMI等参数。而外在干扰则源于大自然与其它人为制造出来的杂讯源,如太阳风暴到马达运转,及附近的电波发射站等,并且这两种干扰也会彼此互动,极容易触发产生更强的辐射干扰效应(过载),甚至使接收器工作停摆。

  空场效应(场型中凹陷下去,辐射功率极小之处),当反射波由反射面向上辐射时相位反转,到达天线与直接辐射波互相抵销,造成能量衰减,而反转相位会依反射面性质而有不同的空场效应,而天线的高度位置,也会如天线场型波瓣因不同长度而有分裂的空场出现,所以天线的高度尺寸也要避免其辐射场正好落在空场内。元件长度对于信号的延迟效应,虽然振幅不变,但会产生相位偏移。

由于UHF为超高频范围0.3~3GHZ,电波传播路径以直线传输最为理想,但传输距离受限,如要扩大电波涵盖区域

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top